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Abstract

Clinical studies have revealed a bidirectional relationship between glioma and ischemic stroke, with evidence of
spatial overlap between the two conditions. This connection arises from significant similarities in their pathological
processes, including the regulation of cellular metabolism, inflammation, coagulation, hypoxia, angiogenesis,

and neural repair, all of which involve common biological factors. A significant shared feature of both diseases

is the crucial role of extracellular vesicles (EVs) in mediating intercellular communication. Extracellular vesicles,
with their characteristic bilayer structure, encapsulate proteins, lipids, and nucleic acids, shielding them from
enzymatic degradation by ribonucleases, deoxyribonucleases, and proteases. This structural protection facilitates
long-distance intercellular communication in multicellular organisms. In gliomas, EVs are pivotal in intracranial
signaling and shaping the tumor microenvironment. Importantly, the cargos carried by glioma-derived EVs closely
align with the biological factors involved in ischemic stroke, underscoring the substantial impact of glioma on
stroke pathology, particularly through the crucial roles of EVs as key mediators in this interaction. This review
explores the pathological interplay between glioma and ischemic stroke, addressing clinical manifestations and
pathophysiological processes across the stages of hypoxia, stroke onset, progression, and recovery, with a particular
focus on the crucial role of EVs and their cargos in these interactions.
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Introduction

Gliomas are primary brain tumors thought to originate
from neuroglial stem or progenitor cells. They consti-
tute nearly 30% of all primary brain tumors and 80-85%
of malignant cases, accounting for the majority of deaths
caused by primary brain tumors [1, 2]. Stroke is the sec-
ond leading cause of disability and death worldwide, with
the highest burden observed in low- and middle-income
countries, where ischemic stroke accounts for approxi-
mately 85% of all cases [3, 4]. In this context, clinical
studies have demonstrated a bidirectional relationship
between glioma and ischemic stroke. The induction
of ischemic stroke in glioma patients has been widely
reported in clinical studies [5, 6]. On one hand, this is
due to the direct infiltration or compression of blood ves-
sels by the tumor [7]; on the other hand, the effects of
paraneoplastic syndrome and anticancer treatments have
also been mentioned [8—10]. Conversely, ischemic stroke
survivors exhibit a higher age-adjusted annual cancer
incidence rate compared to the general population, with
evidence of spatial consistency observed [11, 12]. This
bidirectional interaction between glioma and ischemic
stroke, as reported in clinical studies, can be attributed
to the significant overlap in their underlying pathologies,
which will be illustrated in detail below.

The pathogenesis of intracranial tumors is complex,
involving angiogenesis, immune suppression, metabolic
alterations, genetic and epigenetic mutations, as well as
changes in the tumor microenvironment and blood-brain
barrier disruption [2, 13]. Ischemic stroke occurs when
blood flow to a part of the brain is blocked, typically due
to a blood clot or occlusion of the brain artery, which
leads to a lack of oxygen and nutrients, resulting in brain
cell damage [14, 15]. As the disease progresses, it involves
vascular pathology, tertiary collateral circulation, tissue
ischemia and necrosis, inflammatory cascades at onset,
oxidative stress, disruption of the blood-brain barrier
(BBB), inflammation modulation with scar formation and
resolution, angiogenesis, and neural function compensa-
tion [14, 16]. It is obvious that gliomas share numerous
pathological similarities with stroke, including immune
modulation, oxidative stress, blood-brain barrier dis-
ruption, and angiogenesis. These mechanisms are also
involved in stroke risk factors, stroke onset, and recovery.

The construction of the tumor microenvironment
(TME) plays a critical role in glioma development, as the
tumor modulates intracranial cell function through the
TME, creating a supportive environment for its growth
[17]. During this process, various bio factors, such as
chemokines, are secreted via autocrine or paracrine
mechanisms through extracellular vesicles (EVs), diffus-
ing within the central nervous system [18-20]. EVs play
a key role in complex, long-distance intercellular signal-
ing in multicellular organisms by protecting their cargos
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from enzymatic degradation through a lipid bilayer struc-
ture that prevents enzyme penetration [21, 22]. Given the
pivotal role of EVs in TME construction and intercellular
communication, understanding the molecular interplay
between glioma and ischemic stroke, particularly through
the involvement of EVs, provides valuable insights into
their shared pathophysiology and offers potential thera-
peutic targets for managing both conditions simultane-
ously [23-25].

In this review, we will elucidate the interplay between
glioma and ischemic stroke, with a particular focus on
EVs, which facilitate complex intercellular signaling in
multicellular organisms and share numerous common
cargos between glioma and ischemic stroke [26, 27].

Extracellular vesicles

EVs are small, membrane-bound vesicles secreted by cells
into the extracellular environment. Since 2004, the term
“exosome” has been widely used in the scientific literature
to refer to various types of EVs. However, in September
2011, the International Society for Extracellular Vesicles
(ISEV) formally adopted “extracellular vesicles” as a gen-
eral term, leading to its widespread use [28]. This shift in
terminology reflects a growing recognition that EVs are
not merely a cellular waste disposal mechanism but also
play a critical role in cell-to-cell communication [29].

The therapeutic and diagnostic potential of EVs arises
from their ability to shield cargos during circulation and
function as natural carriers of complex biological materi-
als—including proteins, lipids, and nucleic acids (mRNA,
miRNA, circRNA, IncRNA, and rRNA)—between cells
[30—-32]. Because ribonucleases, deoxyribonucleases, and
proteases cannot penetrate the EV lipid bilayer, encap-
sulating sensitive cargos within vesicles protects it from
enzymatic degradation in the extracellular environment
[21, 22]. Thus, EV biogenesis represents a significant
evolutionary advancement, facilitating complex intercel-
lular signaling in multicellular organisms [26, 27]. EVs
are secreted by all cell types and can be found in nearly
all body fluids, including blood [33], saliva [34], cerebro-
spinal fluid (CSF) [35], breast milk [36], urine [37], and
semen [38], underscoring their promising value of EVs in
clinical biomarker studies. Their ability to travel through
these fluids enables them to deliver functional informa-
tion to distant sites within the body [39]. These findings
confirm the unique role of EVs in cell-to-cell material
transport, particularly over long distances, and provide
insights into cellular processes in both pathological and
physiological contexts [40].

Despite extensive research, the clear classification of
EVs remains challenging. Traditionally, EVs are broadly
divided into three main categories: (a) microvesicles,
which are generated by outward budding and fission of
the plasma membrane; (b) exosomes, formed within the
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endosomal system and released when multivesicular
bodies fuse with the plasma membrane; and (c) apop-
totic bodies, which are shed as blebs from cells undergo-
ing apoptosis [41]. However, because assigning an EV to
a specific biogenesis pathway is complex, ISEV recom-
mends using operational terms for EV subtypes based on
their physical characteristics. For example, “small EVs”
(sEVs) refer to particles smaller than 100—200 nm, while
“medium/large EVs” (m/l EVs) refer to those larger than
200 nm. Additionally, EVs can be categorized by density
into low, middle, and high ranges, each with specific defi-
nitions [42].

EVs play a significant role in the pathogenesis of vari-
ous diseases, including cancer and stroke [31, 43]. They
contribute not only through intercellular communica-
tion but also by altering the extracellular environment at
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lesion sites and influencing both physiological and patho-
logical metabolic processes [22, 43, 44].

Interplay revealed in clinical reports between
glioma and ischemic stroke

Although ischemic stroke and glioma are separate and
distinct conditions, each with its unique characteristics,
numerous clinical investigations have demonstrated a
distinct bidirectional relationship between glioma and
stroke, as shown in Fig. 1. On the one hand, glioma can
increase the risk of ischemic stroke. Certain intracra-
nial gliomas, particularly those located in regions such
as the insula, operculum, and temporal lobe, may infil-
trate or compress blood vessels, potentially leading to the
occurrence of ischemic stroke [7]. In a case report, two
adult patients with supratentorial glioblastomas (GBM)
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Fig. 1 Neurovascular unit and the interplay between stroke and glioma. Numerous clinical investigations have demonstrated a distinct bidirectional
enhancement between glioma and stroke, suggesting their reciprocal interaction in mechanisms. Abbreviations: ROS =reactive oxygen species, Fac-
tor X=coagulation factor X, IL-6 =interleukin-6, IL-13 =interleukin-1 beta, TNF-a=tumor necrosis factor alpha, PAI-1=plasminogen activator inhibitor-1,
EGFR=epidermal growth factor receptor, NF-kB=nuclear factor kappa-light-chain-enhancer of activated B cells, AKT = protein kinase B, MMPs=matrix
metalloproteinases, SDF1 =stromal cell-derived factor 1, HIF 1-a=hypoxia-inducible factor 1 alpha, VEGF =vascular endothelial growth factor
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experienced ischemic stroke precisely at the tumor site
[5, 6]. A clinical study further demonstrated that patients
afflicted with gliomas face an increased risk of ischemic
stroke, with incidence rates up to 9%, compared to 2.7%
in the general population [45, 46]. Stroke has also been
identified as a common postoperative and late complica-
tion of radiotherapy, and it is linked to tumor-induced
hypercoagulability or nonbacterial thrombotic endocar-
ditis [9, 10]. In their research, Schlehofer and colleagues
found a combined odds ratio of 1.9, indicating a poten-
tial association between self-reported stroke within two
years before meningioma or glioma diagnosis, indicating
stroke as a possible risk factor for glioma [47]. Addition-
ally, the migration of metastatic glioma cells increases the
likelihood of emboli formation, potentially leading to the
onset of stroke, as revealed previously [8]. On the other
hand, evidence also suggests that patients with prior
stroke may have a higher risk of glioma. Wojtasiewicz
et al. [12] reported a case in which a patient developed
glioblastoma in a previously infarcted area, two years
after experiencing an ischemic stroke. Qureshi et al. [11]
recorded 3680 noncancerous adults and found that isch-
emic stroke survivors had a higher age-adjusted annual
cancer incidence rate than the general population. A cor-
relation has been observed between stroke and malig-
nant glioma development. Chen et al. [48] uncovered that
female patients aged 40—60 years who experienced stroke
demonstrated a heightened vulnerability to glioma devel-
opment, with adjusted hazard ratios of 7.41 and 16.3,
respectively.
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Alterations in the pathophysiological dimensions
of glioma and ischemic stroke

The rapid proliferation of glioma cells, metastatic activity,
blood-brain barrier disruption, and the release of micro-
and macroparticles into circulation collectively contrib-
ute to thrombosis and capillary obstruction in glioma
[49, 50]. This complex glioma-induced complex homeo-
static changes often result in localized ischemia. Glioma
cells release various procoagulant factors and cytokines,
such as factor X and mucins, which activate monocytes,
endothelial cells, and platelets [51, 52]. Additionally, they
stimulate neutrophils to form neutrophil extracellular
traps (NETs) and inhibit protein C activation [53]. These
processes induce localized inflammation and ischemic
hypoxia within the glioma microenvironment. Numerous
studies have indicated that various forms of glioma ther-
apy, namely platinum-based drugs, angiogenesis inhibi-
tors, and radiotherapy, are associated with an elevated
susceptibility to thromboembolism [7]. As shown in
Fig. 2, we demonstrate the significant interplay between
the pathophysiological dimensions of glioma and isch-
emic stroke, which will be described in detail in the fol-
lowing sections. This indicates that investigating the
shared pathological mechanisms from glioma to stroke
holds substantial importance in enhancing our compre-
hension of stroke occurrences related to cancer.

Hypoxia-related reactive oxygen species (ROS)

Glioma and ischemic stroke share numerous pathologi-
cal pathways, including hypoxia [43]. In tumors, hypoxia
can arise from either disrupted vascular supply or when
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Fig. 2 The pathological overlap between stroke and glioma is significant. Pathological interactions between glioma and stroke are highly overlapping,
forming a complex network. This suggests that the impact of glioma on stroke encompasses various stages, including risk factors, pre-stroke hypoxic

conditions, stroke onset, and post-stroke recovery
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tumor growth outpaces existing vascular blood support.
During ischemic stroke, sudden blockage of cerebral
blood flow results in rapid oxygen depletion, leading to
immediate and irreversible neuronal death, accompanied
by extensive brain damage at the infarct core. Numer-
ous origins of ROS generation have been documented
in both ischemia and glioma. Notably, these two condi-
tions exhibit a shared interconnected signaling network
involved in ROS production and subsequent downstream
effects [7]. ROS are reactive molecules formed due to
unpaired electrons in the outer orbits of specific mol-
ecules resulting from oxygen’s partial reduction [54]. This
unstable state of oxygen leads to the generation of free
radicals through a process of partial reduction [55].

During the progression of glioma, elevated intrinsic
ROS levels are implicated in a wide array of activities,
including the stimulation of oncogenes, augmentation
of metabolic processes, and disruption of mitochondrial
functionality [55]. In ischemic stroke, ROS levels tran-
sition from baseline to peak concentrations during the
reperfusion phase [56]. This surge in ROS level poten-
tially plays a role in processes such as apoptosis and cel-
lular necrosis. ROS at a toxic level due to an imbalance in
production and antioxidant neutralization by antioxidant
enzymes, leads to cellular injury via lipid peroxidation,
protein oxidation, and DNA damage [56]. Intracellular
reactive ROS are generated predominantly by electron
transfers from nicotinamide adenine dinucleotide phos-
phate (NADPH) oxidase to molecular oxygen [57].

Blood-brain barrier (BBB)

The BBB consists of the contiguous endothelial lining
of capillaries, closely interlinked cellular junctions, an
undamaged basement membrane, pericytes enwrapping
vessels, microglial cells, and glial membrane enveloped
by astrocytes [58]. Glioma advancement is closely inter-
twined with the development of new blood vessels, with
a key clinical complication being vasogenic brain edema,
which significantly elevates intracranial pressure due to
compromised BBB integrity and increased permeabil-
ity [59]. Glioma cells exert influences on the BBB both
directly, through interactions with nearby BBB regions,
and indirectly, by releasing various biochemical sub-
stances [60]. These cells secrete factors such as vascular
endothelial growth factor (VEGF), which compromise
BBB integrity, increase permeability, and enable tumors
to access nutrients and oxygen from the bloodstream
[61]. The BBB also allows immune cells, including tumor-
associated macrophages, to infiltrate the brain, poten-
tially accelerating tumor progression [62]. In the context
of an ischemic stroke, disrupted BBB leads to the leak-
age of blood-borne cells, chemicals, and fluid into the
brain parenchyma [63, 64]. This occurs due to heightened
paracellular and transcellular permeability, along with
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significant damage to the endothelial cells that form the
barrier [63, 64]. This disruption destabilizes water and
ion balance in the brain, resulting in cerebral edema [64,
65]. The infiltration of leukocytes further exacerbates
inflammation, intensifying damage to brain tissue [64,
66]. In stroke or glioma, although BBB dysfunction gen-
erally leads to adverse outcomes, it may offer a poten-
tial advantage by allowing therapeutic agents to reach
intended brain targets more effectively.

Neurovascular unit

Pericytes

Pericytes envelop a significant portion of the surface of
brain capillary endothelial cells, especially in regions with
a pericyte-to-endothelial cell ratio of 1:3 [67]. As essential
components of the neurovascular unit and BBB, pericytes
act as gatekeepers, regulating the passage of brain cells as
well as the transport of nutrients and other substances
between the bloodstream and the brain’s interstitial fluid
[68]. Numerous studies suggest an association between
pericytes and pathological changes in the BBB, which
have been linked to stroke. Ischemic injury to pericytes
within the cerebral microvasculature has a detrimental
effect on the damage caused by stroke and the develop-
ment of brain edema [69, 70]. This injury disrupts micro-
vascular blood flow and compromises the integrity of the
blood-brain barrier, exacerbating the overall impact of
the stroke on brain tissue [69, 70]. Conversely, signaling
pathways activated in pericytes within the vasculature of
the peri-infarct area in response to ischemia positively
impact stroke outcomes. These signaling events promote
post-stroke angiogenesis and neurogenesis, contributing
to recovery and healing after a stroke [70, 71]. While in
the glioma context, glioblastoma cells leverage interac-
tions with pericytes to promote GBM cell proliferation
and enhance tumor growth [72]. An in vivo investigation
of glioblastoma cell proliferation was conducted by graft-
ing co-cultured human RFP-labeled glioblastoma cells
and GFP-labeled mouse pericytes onto the brain cortex
of an immunocompetent mouse model. Mice with these
xenografts exhibited an enhanced level of perivascular
infiltration of glioblastoma cells in their brain tissues [73].
Pericytes play crucial roles in tumor angiogenesis. Huizer
et al. indicated that pericytes serve as the primary source
of periostin in human gliomas, where periostin plays a
vital role in facilitating blood vessel growth and branch-
ing [74]. Furthermore, pericytes can modulate their own
immune properties, enabling immune evasion. In vitro,
analysis of membrane molecules involved in suppress-
ing antitumor immune responses, such as interleukin-1
receptor antagonists, revealed that pericytes display an
immunosuppressive pattern of surface molecules after
interacting with glioblastoma cells [72].
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Astrocytes

Astrocytes, especially their extended endfeet encom-
passing the extracellular matrix and pericytes, serve as
the final barrier against the entry of undesirable proteins
and molecules. These astrocyte-loaded endfeet al.so
play a crucial role in strengthening the BBB by releasing
specific bioactive substances including growth factors
such as VEGF and glial cell-derived neurotrophic factor
[75-77]. Astrocytic dysfunction, marked by the detach-
ment of endfeet from the basement membrane, occurs
shortly after a stroke [77, 78]. In response to minor
ischemic injury, astrocytes begin proliferating, causing
enlargement of both their cell bodies and processes along
with elevated expression of glial fibrillary acidic protein
(GFAP). As the extent of injury escalates, astrocytes
undergo substantial proliferation, resulting in a more
pronounced increase in GFAP expression. Glioma cells
establish attachments to blood vessels utilizing brady-
kinin, a chemotactic signaling peptide produced by vas-
cular endothelial cells [79]. Glioma cells then proceed to
envelop the external surface of the existing blood vessels
through invasive and parasitic mechanisms, infiltrating
the adjacent space [80]. This invasive conduct disrupts
the connection between astrocyte end feet and endothe-
lial cells, which ultimately results in the breakdown of the
BBB [81]. Notably, ischemia-induced astrocyte activa-
tion, followed by mutations in genes like neurofibroma-
tosis type 1 and glycoprotein podoplanin during reactive
gliosis, has been implicated in gliomagenesis [7]. This
is due to the proposition that both glial progenitor cells
and reactive astrocytes are suggested sources of identi-
cal lineages. Reactive astrocytes also enhance glioma cell
proliferation and migration by producing matrix metal-
loproteinases (MMPs) and releasing stromal cell-derived
factor 1 (SDF1) [82, 83]. Furthermore, tunneling nano-
tubes and the secretion of various molecules such as
Interleukin-6 (IL-6), IL-19, Insulin-like Growth Factor 1
(IGF-1), transforming Growth Factor-p (TGF-B), mono-
cyte Chemoattractant Protein 4 (MCP4), and VEGF also
contribute to the role of reactive astrocytes in promoting
glioma infiltration [84, 85].

Microglia

In a normal physiological state, microglia, the resi-
dent immune cells of the central nervous system (CNS),
exhibit a ramified morphology and contribute signifi-
cantly to brain homeostasis, thus forming an integral
component of the neurovascular unit [86]. Upon expo-
sure to environmental stress or injury, microglia trans-
form morphologically, adopting an amoeboid shape
with shorter projections and larger cell bodies. The
diverse biological characteristics exhibited by microglia
in response to injury correspond to distinct phenotypes,
as indicated by the pro-inflammatory M1 phenotype and
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the anti-inflammatory M2 phenotype [87]. These phe-
notypes are marked by unique secretion patterns. M1
microglia release pro-inflammatory cytokines, includ-
ing IL-6, IL-1p, ROS, tumor necrosis factor-a (TNF-a),
inducible nitric oxide synthase (iNOS), and reactive
nitrogen species (RNS). In contrast, M2 microglia pre-
dominantly secrete anti-inflammatory cytokines such
as IL-4, IL-10, TGF-B1, IGF-1, and nerve growth fac-
tor (NGF) [88, 89]. Manipulating the transition of resi-
dent microglia from the M1 to the M2 state presents an
intriguing target for potential therapeutic interventions
in stroke treatment [90].

In glioma, microglia and macrophages constitute the
most abundant population of infiltrating cells, collec-
tively accounting for at least one-third of the total tumor
mass [91]. Evidence supports that microglia signifi-
cantly contribute to creating a tumor-promoting micro-
environment that promotes the growth of gliomas [92].
Specifically, the presence of transformed microglia, tran-
sitioning from the M1 (tumor-suppressive) to the M2
(tumor-promoting) state, is a key facilitator in inducing
immune suppression within the tumor region [7]. This
transformation and immune suppression contribute to
the augmentation of tumor expansion, metastasis, angio-
genesis, and the maintenance of glioma stem cells. These
processes are mediated through the secretion of various
factors, such as MMPs, VEGE, IL-10, TGF, TNEF, chemo-
kine ligand 18 (CCL18), and CCL22, CXCL12, and Fas
ligand [7].

Angiogenesis
Recent studies have highlighted the importance of neuro-
vascular networks, underscoring the critical communica-
tion between neurons and blood vessels for proper brain
function [93]. Sprouting angiogenesis, which involves the
emergence of new blood vessels from existing ones, plays
a crucial role in both physiological processes such as tis-
sue regeneration, wound healing, and morphogenesis, as
well as in pathological conditions like tumor growth and
ischemic stroke [94]. Although both stroke and tumor
angiogenesis involve the formation of new blood ves-
sels, their underlying mechanisms, purposes, and out-
comes are distinct. Poststroke angiogenesis is generally
regarded as a favorable defense response against hypoxia
by improving the blood supply to the brain tissue. In
contrast, increased angiogenesis within cancer tissue
supplies oxygen and nutrients to cancer cells, thereby
promoting tumor growth, invasion, and metastasis [95].
Angiogenesis typically begins 4 to 7 days after cerebral
ischemia, primarily at the boundary between the isch-
emic core and the surrounding tissue. This post-ischemic
angiogenesis potentially supports the remodeling of neu-
rons by promoting neurogenesis and participating in
the guidance of sprouting axons, facilitated by signaling
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pathways involving vascular endothelial growth factor
and laminin/p1-integrin [96]. In tumors, the expanding
cell mass leads to both an increased oxygen demand and
an increased diffusion distance between nearby capillar-
ies and the central region, which together contribute to
decreased oxygen availability [97]. This phenomenon fur-
ther contributes to the establishment of a hypoxic micro-
environment. Cancer angiogenesis is then activated to
meet the nutritional and oxygen demands of cancer cells,
enabling their proliferation. This process includes multi-
ple stages: basement membrane degradation, endothelial
cell proliferation, migration, sprouting, branching, and
tubular structure formation [43, 98].

Cancer cells produce a variety of proangiogenic fac-
tors while concurrently suppressing the action of antian-
giogenic factors within their surrounding environment,
thereby facilitating the growth of blood vessels [43]. It’s
important to mention that certain tumor cell secretions,
such as extracellular vesicle-associated miR-181b-5p and
miR-210, have been reported to promote post-stroke
angiogenesis [43]. These findings suggest the therapeu-
tic potential of glioma-derived EVs through post-stroke
angiogenesis. However, comprehensive information
regarding these phenomena is currently limited, and fur-
ther substantiated evidence is required to fully under-
stand and validate these aspects.

Immune response

The immune response is divided into two main branches:
the innate and adaptive immune systems. The innate
immune response, also known as the inflammatory
response, acts as the body’s first line of defense against
pathogens and is the primary reaction to tissue injury
[99]. In contrast, the adaptive immune system, involv-
ing lymphocytes (B cells and T cells), is more special-
ized and targets specific pathogens. While the adaptive
response takes longer to activate initially, it develops
immunological memory, allowing for a faster and more
efficient reaction upon re-exposure to the same patho-
gen [99]. Inflammation can exacerbate tissue damage in
acute stroke, but subsequent adaptive immune responses
and anti-inflammatory processes are essential for tissue
repair [14, 100]. After a stroke, damaged cells release
alarm signals or molecules referred to as damage-asso-
ciated molecular patterns (DAMPs), which encompass a
variety of components, such as nuclear proteins, nucleic
acids, heat-shock proteins, and other molecules [101].
DAMPs act as initiators, activating immune responses
by binding to specialized pattern recognition receptors.
Glioma cells, on the other hand, have the ability to attract
various cells, including immune cells, to their microenvi-
ronment by releasing cytokines such as TGF-p and GM-
CSF which serve as signals that guide these immune cells
to the specific niche [102, 103]. Subsequently, the glioma
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cells influence these recruited cells, inducing them to
adopt tumor-promoting phenotypes that facilitate the
tumor’s growth and progression [104]. Once recruited,
these immune cells can form a physical barrier, imped-
ing the access of additional immune cells and hindering
their ability to target tumor cells effectively. Glioma-
associated microglia and macrophages can drive immune
cells into pro-inflammatory or anti-inflammatory pheno-
types, modulate the immune response, and reduce the
immune system’s attack on tumor cells, thereby enhanc-
ing glioma survival [105]. Additionally, glioma-associated
microglia and macrophages reorganize the extracellular
matrix, making tumor cells more susceptible to invasion
[106, 107]. In conclusion, in ischemic stroke, the immune
response plays a dual role: it aims to repair damaged tis-
sue and restore homeostasis, while also potentially exac-
erbating injury through inflammatory processes [100].
In contrast, the immune response in tumors focuses
primarily on recognizing and eliminating abnormal cells
within the complex tumor microenvironment [104, 105].

The impacts of diverse cargos within glioma-
derived EVs on glioma progression

The tumor microenvironment comprises tumor cells and
surrounding components, including innate and adaptive
immune cells, mesenchymal fibroblasts, and vascular and
lymphatic networks [17]. Various chemokines, secreted
through autocrine or paracrine mechanisms, make up
the TME [18, 19]. Tumor growth is driven by the inter-
actions between tumor-residing cells and the TME, and
alterations in the microenvironment can significantly
affect tumorigenesis and progression [17, 25]. Glioma-
derived EVs transport bioactive cargos into the TME and
recipient cells, playing critical roles in intercellular com-
munication [24, 108]. These EVs can alter cellular func-
tions or reprogram recipient cells, influencing tumor
immune tolerance, promoting malignant transformation,
and mediating interactions within the TME. Additionally,
glioma-derived EVs regulate glioma cell stemness, con-
tribute to angiogenesis, drive treatment resistance, and
are implicated in neurodegenerative disease pathology
[24, 108].

The vesicles carry a range of molecular modifiers that
facilitate communication between cancer cells and sur-
rounding stromal cells, with numerous EV cargos iden-
tified in clinical reports [109-111]. This EV-mediated
intercellular communication provides critical insights
into the molecular characteristics of tumors, promoting
tumor growth, metabolism, invasion, and resistance [23,
112]. Beyond their direct impact on glioma properties,
EV cargos also have indirect effects, including immune
suppression and angiogenesis. In this review, we compile
recent reports on glioma-derived EV cargos, as shown
in Table 1. We categorized them by function and ranked
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them based on chemical properties, such as proteins and
nucleic acids.

Glioma-derived EVs participate in constructing an
immunosuppressive TME

In the immunosuppressive tumor microenvironment,
immune cells and glioma cells compete for nutrients, and
the metabolites produced during this competition can
influence immune cell differentiation and function [17,
113]. This competition contributes to the immunosup-
pressive environment, where tumor-released cargos in
EVs transmit signals that are taken up by immune cells in
the brain, shifting their cytokine profiles toward immune
suppression [114, 115]. In this process, the recipient cells
of these cargos include monocytes, myeloid-derived sup-
pressor cells (MDSCs), NK cells, CD8+ T cells, CD4+ T
cells, microglia, and macrophages, often resulting in the
suppression of immune cell activity, induction of M2
macrophage polarization, regulation of microglia, acti-
vation of MDSCs, and modulation of T cell expansion or
function. Ultimately, these interactions facilitate metas-
tasis and immune evasion [116—123]. Though immuno-
suppressive cargos are predominant, immune-activating
cargos have also been identified. For instance, Shah et
al. found that miR-1983, a glioma-derived cargo, enables
NK cells to kill glioma cells through the miR-1983-TLR7-
IEN( circuit [120].

Glioma-derived EVs enhance glioma-related angiogenesis
Tumor-derived EVs have been reported to facilitate
angiogenesis by delivering functional and regulatory fac-
tors that induce proangiogenic or anti-apoptosis changes
in brain microvascular endothelial cells [124, 125].
GBM-derived EVs can not only transfer mRNAs into
endothelial cells, leading to transcriptional changes and
the subsequent synthesis of functional proteins in these
recipient cells [126]. These vesicles are also enriched in
angiogenic protein factors and promote tubule forma-
tion [127, 128]. Interestingly, the proteome and mRNA
profiles of EVs closely reflect the oxygenation status of
donor glioma cells [124]. EVs are also enriched with
angiogenesis-related regulatory factors and are released
with increased autocrine and promigratory activation of
GBM cells [129]. Recent research has identified long non-
coding RNAs, such as CCAT2 and POU3F3, as enhanc-
ers of angiogenesis [125, 130]. Conversely, EV-derived
miR-1 and Annexin A2 (ANXA2) have been reported as
orchestrators of neovascularization, targeting multiple
pro-oncogenic signals [131].

Glioma-derived EVs represent a promising field in clinical
biomarker studies

Due to their intracranial location, glioma tissues are
less accessible than other solid tumors, making the
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identification of prominent biomarkers in biological
fluids essential. Given the unique characteristics of the
blood-brain barrier, studies of cerebrospinal fluid hold
particular significance for gliomas compared to other
tumors [126]. Following this perspective, numerous stud-
ies on CSF and serum have been conducted, highlighting
glioma-derived EVs due to their enrichment of specific
factors [35]. Particularly following the extensive appli-
cation of proteome profiling, genomics, and microarray
analysis, various biomarkers, such as epidermal growth
factor receptor variant III (EGFRVIII) and miR-21, have
been widely studied within glioma-derived EVs and
found in CSF and plasma [132-134].

Potential effects of cargos in glioma-derived EVs
on ischemic stroke

The pathogenesis of ischemic stroke is complex and mul-
tifactorial, with common etiologies including large artery
atherosclerosis, cardioembolism, and small artery occlu-
sion [135, 136]. Progression of ischemic stroke involves
vascular pathology, formation of tertiary collateral cir-
culation, tissue ischemia and necrosis, inflammatory
cascades, oxidative stress, blood-brain barrier disrup-
tion, scar formation and resolution, and neural func-
tion compensation [14, 16]. Hemorrhagic stroke, on the
other hand, primarily involves mass effect and hematoma
absorption, both significantly influenced by inflammation
[137]. As shown in Fig. 3, glioma-derived extracellular
vesicles carry cargos originating from the tumor micro-
environment and spread intracranially. Notably, these
cargos have been widely implicated in stroke, where they
exhibit coherent roles in both conditions, as detailed in
the following sections. Given the efficiency and ubiquity
of EVs in intercellular communication and their role in
pathological processes like inflammation and angiogene-
sis, we hypothesize that glioma-derived EVs may provide
a critical link between prevalent neurovascular diseases
and intracranial tumors.

Glioma-derived EV cargos associated with tumor growth,
metabolism, invasion, and metastasis, and their effects on
ischemic stroke

An important aspect of glioma growth and invasion is the
communication and manipulation of other cells within
the brain microenvironment, which supports tumor
progression and resistance to therapy. In this process,
extracellular vesicles play a crucial role [25, 138]. In addi-
tion to their indirect effects on immune suppression and
angiogenesis, glioma-derived EVs directly impact glioma
characteristics by promoting motility, proliferation, and
invasiveness [138]. Notably, as shown in Table 2, some
EV cargos commonly observed in ischemic stroke pathol-
ogy also play similar roles in glioma. For example, Pace
et al. demonstrated through in vitro experiments that L1
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y Extracellular vesicles

-/

Cargos

>k
° S ” <,
- Angiogenesis related cargos
é e . Glioma VEGF
58 Tumor growth related cargos PDGF
25 L1CAM MMPs
2 TrkB CXCR4
AQP4 caveolin-1
L Inflammation related cargos HIF-1a
By IL-6 miR-148a
i SDF-1a
5 (Eh IFN-y
N miR-21
PD-L1

Neurovascular unit

&

Ischemic Stroke

Fig. 3 Glioma-derived EVs and their role in stroke. Glioma-derived extracellular vesicles carry cargos that have been widely reported in stroke and
play coherent roles in both conditions. Abbreviations: IL.-6=interleukin-6, SDF-1a=stromal cell-derived factor 1 alpha, IFN-y=interferon gamma,
PD-L1=programmed cell death ligand-1, LICAM=neural cell adhesion molecule L1, TrkB=tropomyosin receptor kinase B, AQP4=aquaporin 4, HIF-
1a=hypoxia-inducible factor 1 alpha, VEGF =vascular endothelial growth factor, PDGF = platelet-derived growth factor, MMPs =matrix metalloprotein-

ases, CXCR4 =C-X-C chemokine receptor type 4

cell adhesion molecule-decorated exosomes increase the
motility, proliferation, and invasiveness of cell lines [112].
Interestingly, LICAM has also been identified as a bio-
marker in stroke patients [139]. Similarly, Colombo et al.,
using wild-type and tropomyosin receptor kinase B-defi-
cient astrocytes, found that astrocyte-derived tropomyo-
sin receptor kinase B (TrkB) expression is upregulated
in stroke, promoting Aquaporin 4 (AQP4) upregulation
via hypoxia-inducible factor 1 alpha (HIF1l-a) activa-
tion under hypoxic conditions. This contributes to brain
injury and edema formation [140]. Notably, these same
factors—TrkB, AQP4, and HIFl-a—are also identified
as EV cargos in glioma, where they significantly contrib-
ute to tumor cell proliferation, migration, and resistance
[141-143]. This section will provide a detailed discussion
of these individual cargos.

The enhancing or suppressing roles in cellular activity
and behavior are generally consistent in both stroke and
glioma contexts. For example, TrkB exhibits an enhanc-
ing role in both contexts. Studies using YKL-40-silenced
glioblastoma cells have highlighted that TrkB-contain-
ing exosomes contribute to glioblastoma by promoting
tumor cell proliferation and activating endothelial cells
[141]. In stroke, TrkB’s role in neurological recovery is

well-documented, where it enhances corticospinal syn-
aptic connections and neuroplasticity, thus improv-
ing patient outcomes [144—146]. In contrast, MiR-375
functions as a suppressor in cellular activities within
both glioma and stroke. In glioma, MiR-375, a cargo of
glioma-derived EVs, is found to play a protective role by
suppressing glioma proliferation, migration, and invasion
[147]. In stroke, downregulation was found in patients
with ischemic stroke and in rat models, and protection
of MiR-375 was approved in stroke which may achieved
by reducing apoptosis and oxidative stress [148]. AQP4,
another cargo found in both glioma and stroke, is
released through EVs in glioma and influences the glio-
blastoma microenvironment by promoting a migratory
phenotype in adjacent tumor cells [142]. While AQP4
plays a complex, dual role in stroke, where it exacerbates
cerebral edema formation in the early stages but miti-
gates it in later stages [149, 150]. Lastly, miR-148a, a glio-
blastoma proliferation-promoting cargo, has also been
identified as a biomarker for ischemic stroke in blood
samples [151-153].

In gliomas, the influence of EV cargos on proliferation
and invasiveness frequently coincides with the devel-
opment of treatment resistance. For example, in the
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radioresistant U251 glioma cell line, circATP8B4 has
been identified as a radioresistance-related cargo and is
associated with enhanced glioma cell proliferation, motil-
ity, and invasion [154, 155]. Temozolomide resistance in
gliomas is also usually accompanied by tumor prolifera-
tion, growth, and invasion, which has been extensively
studied due to its clinical significance. Numerous temo-
zolomide resistance-related cargos have been identified,
including miR-221, miR-151a, miR-30b-3p, and IncRNA
SBF2-AS1 [156—158]. While miR-221 and miR-151a are
also recognized in the pathology of stroke [159, 160].
Using the U87-MG glioblastoma cell line, glioblastoma-
derived EVs carrying HIF-1la were shown to promote
tumor progression and radioresistance [143]. The expres-
sion of HIF-1a induced by stroke is time-dependent, and
plays an extensive role in the pathophysiology of stroke,
including neuronal survival, neuroinflammation, angio-
genesis, glucose metabolism, and blood-brain barrier
regulation [161-163]. Through experiments involving
lentivirus-infected mice and primary brain cells, Cui et
al. demonstrated HIF-1a’s modulatory effects on brain
injury and neuroinflammation [164]. The protective
function may arise from both non-transcriptional mech-
anisms and its function as a nuclear transcription factor
[165].

Glioma-derived EV cargos associated with angiogenesis
and their effects on ischemic stroke

Angiogenesis plays a crucial role after stroke and indi-
cates a better outcome [16, 166, 167]. This is because
neurogenesis and angiogenesis are highly coupled, work-
ing together to create restorative microenvironments
within ischemic tissue, which leads to improved neuro-
logical function [168, 169]. Interestingly, angiogenesis
can develop before stroke onset as a structural and func-
tional adaptation to hypoxia, which often occurs due to
chronic conditions like atherosclerosis or Moyamoya dis-
ease [170-172]. Key biomarkers, such as VEGF, MMPs,
HIF-1a, TGF-B1, IL-6, and IL-8, serve as indicators of
new blood vessel formation in stroke [127, 128, 173]. In
the meantime, they are also angiogenesis-promoting
cargos widely reported in glioma-derived EVs [174].
Similarly, as shown in Table 3, a large number of angio-
genesis-related cargos from glioma-derived EVs overlap
with angiogenesis-promoting factors in ischemic stroke.
Due to the significant overlap in the underlying mecha-
nisms and involved biological factors, it is reasonable
to hypothesize that cargos from glioma may influence
angiogenesis in the context of stroke.

Using wound closure assay and tube formation assay,
Giusti et al. demonstrated a dose-dependent effect of
glioblastoma-derived EVs on endothelial growth [174]. In
the current study, many angiogenesis-related cargos were
identified in these EVs, including plasminogen activators
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(tPA and uPA), PAI-PA, CXCR4, VEGF, MMPs (MMP-2
and -9), and TGF-B, most of which are also crucial
angiogenic factors in stroke [174]. In the ischemic stroke
context, the fibrinolytic system plays an important role
in angiogenesis, in which tissue plasminogen activator
(tPA) and urokinase plasminogen activator (uPA) func-
tion as plasminogen activators, promoting fibrinolysis
by converting plasminogen to plasmin. While plasmino-
gen activator inhibitor-1 (PAI-1) serves as an inhibitor
by forming inhibitory complexes (PAI-PA) with tPA and
uPA, thereby maintaining the balance between coagula-
tion and fibrinolysis [175, 176]. CXCR4 typically serves
as the receptor in the SDF-1/CXCR4 pathway and plays
an important role in neuroprotection and angiogenesis
after stroke [177-179]. Additionally, CXCR4 is involved
in the migration of stem cells to infarcted brain areas,
promoting recovery after stroke [180]. The VEGF family
is well known for regulating vascularization. In the brain,
VEGFs are crucial for angiogenesis, neuroprotection, and
neurogenesis [181, 182]. Matrix metalloproteinases, key
extracellular endopeptidases, digest extracellular proteins
and serve as biomarkers for stroke. Among them, gela-
tinases (MMP-2 and MMP-9) are the most studied and
can promote neurological recovery via angiogenesis in
stroke [183, 184]. Lastly, using an oxygen-glucose depri-
vation model, Zhang et al. found that EVs from hypoxia-
preconditioned microglia promote angiogenesis through
the TGF-/Smad2/3 pathway [185].

Using both in vivo and in vitro models, Kucharze-
wska et al. demonstrated alterations in the proteome and
mRNA profiles under hypoxic conditions. Compared
to normoxic exosomes, hypoxic exosomes were found
to correlate with tumor vascularization, pericyte vessel
coverage, glioblastoma cell proliferation, and decreased
tumor hypoxia in a mouse xenograft model [129]. Their
study identified caveolin-1, PTX3, IL-8, MMP9, platelet-
derived growth factors (PDGFs), CD26, PAIl, and lysyl
oxidase as cargos of glioma-derived EVs [129]. In the
context of stroke, these cargos are similarly involved.
Blochet et al. observed increased caveolin-1 expression
in new blood vessels within the lesion and in reactive
astrocytes in peri-lesion areas, promoting neovascular-
ization, astrogliosis, and scar formation [186]. Rajkovic et
al. reported significantly decreased vessel diameter, vessel
proliferation, vascular density, and reactive astrocytes in
PTX3 knockout (KO) mice, revealing the angiogenic role
of PTX3 in stroke [187]. The PDGF family, well-studied
in vascular physiology and pathology, including angio-
genesis, is also relevant in stroke [188]. Elevated levels
of VEGF in stroke are associated with better outcomes,
potentially due to the angiogenic role of PDGF [189-
191]. Moreover, human bone marrow mesenchymal stem
cells derived VEGF were found to be stimulated by IL-8
after stroke. IL-8 is an inflammatory chemokine with
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potent proangiogenic properties in stroke and also serves
as angiogenesis-related cargo from glioma EVs [129, 192].
Additionally, IL-6, another inflammatory chemokine
found in EVs from glioma, is involved in microglia-medi-
ated vascular repair and functional recovery after cere-
brovascular injury [193, 194].

Non-coding RNAs (ncRNAs), when acting as car-
gos of glioma-derived EVs, exhibit significant overlap
in angiogenesis-related functions between gliomas and
indicators of vascular development in stroke. ncRNAs,
including microRNAs (miRNAs), long non-coding RNAs
(IncRNAs), and circular RNAs (circRNAs), are func-
tional RNA molecules that regulate the expression and
function of various genes through different mechanisms
[195-197]. Glioma-derived EVs contain microRNAs such
as miR-29a, miR-30e, miR-26a, and miR-1, which have
been identified as pro-angiogenic microRNAs [126, 128,
131]. In addition to microRNAs, long non-coding RNA
HOTAIR has been identified as a cargo of glioma-derived
EVs by Ma et al. It was found to enhance angiogenesis by
induction of VEGFA expression in glioma cells and facili-
tating its transmission to endothelial cells via glioma cell
derived-extracellular vesicles [198]. Regarding the role
of ncRNA cargos in stroke, various non-coding RNAs
(ncRNAs) have been identified as key players with stud-
ies demonstrating that changes in their expression levels
during and after stroke can significantly influence angio-
genesis [195, 199]. The microRNA cargos from glioma-
derived EVs, previously mentioned, including miR-26a
and miR-210, also play similar roles in promoting angio-
genesis in stroke [200-202]. Lastly, using an oxygen-
glucose deprivation/reperfusion model of human brain
microvascular endothelial cells, IncRNA HOTAIR was
identified as a common factor in both glioma-derived EV
cargos and as a mediator of angiogenesis in hypoxic-isch-
emic conditions [203].

Glioma-derived EV cargos associated with inflammation
and their effects on ischemic stroke

In the brain, the interaction between immune system
activation and inflammation exerts both harmful and
protective effects on central nervous system function
[204, 205]. In stroke, although inflammatory cascades
can exacerbate tissue damage in the acute phase, adap-
tive immune responses and inflammatory processes
are essential for subsequent tissue repair [14]. Phago-
cyte activity exemplifies this dynamic: microglial cells,
macrophages, and phagocyte-mediated inflammatory
responses play pivotal roles in the onset, progression,
and outcomes of brain injury following ischemic stroke
[206]. In this process, the polarization of microglia or
macrophages into the M1 phenotype typically results in
the release of destructive pro-inflammatory mediators,
whereas M2 polarization clears cellular debris through
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phagocytosis and releases numerous protective/trophic
factors [100]. Due to this dualistic nature, subtle modula-
tion is critical for maintaining the balance between these
phenotypes in stroke [100]. The situation is different for
glioma, as the formation of an immunosuppressive tumor
microenvironment is essential. The cargos released by
glioma cells generally contribute to the immunosuppres-
sion of immune cells, which is critical for tumor prolif-
eration [17]. Thus, M2 macrophage polarization, rather
than M1, becomes significant, promoting tumor growth,
invasion, and even angiogenesis; consequently, glioma-
derived EV cargos frequently drive macrophages toward
an M2 phenotype [193]. Using in vivo and in vitro mod-
els, van der Vos et al. directly visualized the release of EVs
from glioma cells and their uptake by brain microglia and
monocytes/macrophages, which led to increased microg-
lial proliferation and a cytokine profile shift toward
immune suppression [114]. In the current study, miR-
451 and miR-21 have been identified as EV cargos, where
they are also recognized as protective agents in ischemic
stroke, potentially by regulating apoptosis [207-210].

As shown in Table 4, the overlap of biofactors is evi-
dent in the polarization of phagocytes (microglia and
macrophages), both of which participate in immune
modulation in glioma and ischemic stroke. For example,
in glioma, Qian et al. discovered an enrichment of miR-
1246 in the cerebrospinal fluid of GBM patients, which
decreased after tumor resection. Their study found that
hypoxic glioma-derived exosomes (H-GDEs) significantly
promote M2 macrophage polarization, with miR-1246
identified as the most enriched microRNA in H-GDEs
through microRNA sequencing analysis [123]. Notably,
miR-1246 has also been identified as a potential diagnos-
tic biomarker for ischemic stroke in serum [211]. Addi-
tional polarization-related cargos in glioma-derived EVs
include IL-6 and miR-155-3p, which promote M2 mac-
rophage polarization via the IL-6-pSTAT3-miR-155-3p-
autophagy-pSTAT3 positive feedback loop, further
enhancing glioma progression [193]. Meanwhile, IL-6
is critical in stroke for modulating immune responses
and the acute phase reaction [212]. Interestingly, in
turn, these tumor-associated macrophages can also pro-
duce EVs decorated by immunosuppressive and tumor-
growth-promoting proteins, which can promote tumor
cell migration and proliferation [213].

The overlap extends to myeloid-derived suppressor
cell-related EV cargos in glioma and inflammation modu-
lators in ischemic stroke, as shown in Table 4. Myeloid-
derived suppressor cells (MDSCs) belong to a key cell
population responsible for regulating immune responses
and are highly effective at suppressing T cell function, and
play a crucial role in both tumor progression and stroke
[214, 215]. Using glioma cell lines, Zhang et al. found
that basic leucine zipper ATF-like transcription factor 2
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(BATF2) inhibits intracellular SDF-1a production, reduc-
ing SDF-1a levels in EVs and subsequently inhibiting the
recruitment of MDSCs [216]. While in stroke, SDF-1a
also modulates inflammation. As a chemokine, SDF-1a
is crucial for monocyte homing and migration across the
blood-brain barrier, playing a significant role in the late
infiltration of the penumbra by recruiting monocytes to
infarcted tissue in the later stages of stroke [217, 218].
Not only chemokine, miRNAs, including miR-1246, miR-
1298-5p, miR-29a, miR-92a, miR-10a, and miR-21, were
found to be enriched in the body fluids of glioma patients
and shown to drive the activation of MDSCs through dif-
ferent pathways, some of which are also matters in stroke
[119, 219, 220]. In stroke, elevation of miR-29a has been
shown to have a protective function by controlling M1
microglia pre-polarization or by promoting axonal out-
growth and neurological recovery [221-223]. Protection
function was also found in miR-10a by inhibiting athero-
sclerotic lesion formation, and in miR-92 by alleviating
cerebral vascular injury [148, 224, 225]. Notably, miR-21,
a glioma EV biomarker, has been detected in CSF and
serum of glioma patients and correlates with poor prog-
nosis and tumor recurrence [133, 226-228]. It plays an
important role in maintaining the immunosuppressive
environment in glioma, possibly mediated by MDSCs,
and has an anti-apoptotic effect [114, 119]. MiR-21 also
acts as an inflammation modulator in stroke and has
been consistently shown to be a potent anti-apoptotic
factor, playing a neuroprotective role in cerebral ischemic
and reperfusion injury [209, 229, 230]. Additionally, miR-
21 shows potential for promising clinical outcomes [208,
231, 232].

T cell-related glioma cargos similarly overlap with
stroke-related inflammatory factors, as shown in Table 4.
Liu et al. found, using the GL26 cell line, that glioblas-
toma-derived exosomes reduce CD8+T cell numbers
and functionality, fostering tumor growth in an immuno-
suppressive tumor microenvironment. IFN-y and gran-
zyme B were identified as key cargos in these EVs during
this period [121]. IFN-y serves as an indicator of inflam-
mation in stroke, especially of T-cell function and stroke-
associated infections, it can also serve as a protective
biomarker in the clinic, which was reported to elevate in
stroke patients [233-237]. Ricklefs et al. demonstrated
that glioblastoma-derived EVs can suppress T cell activa-
tion and proliferation through T cell receptor interaction
with anti-CD3, or alternatively, by antigen presenta-
tion via dendritic cells (DCs). In their study, PD-L1 was
found on the surface of some glioblastoma-derived EVs,
both PD-L1 and PD-L1 DNA were identified as cargos
of glioma-derived EVs in the process of T cell inhibition
[238]. In stroke, the T-cell regulatory role of PD-L1 has
also been observed. Kim et al. demonstrated that soluble
PD-L1 binds to PD-1, redirecting monocyte fates from
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pro-inflammatory, classical phenotypes to non-classical,
anti-inflammatory ones, thereby protecting against dam-
age after middle cerebral artery occlusion [239]. Beyond
its immunosuppressive role, PD-L1 was also found to
regulate platelet activation and thrombosis through the
Caspase-3/GSDME pathway in stroke [240]. Conversely,
a study by Bodhankar et al. challenges these findings,
suggesting that PD-L1 may worsen stroke outcomes, pos-
sibly through effects on suppressor T cells [241]. Studies
involving patient clinical samples have identified CD73
as a crucial cargo in glioblastoma EVs, capable of being
taken up by T cells and inhibiting their clonal expan-
sion in vivo [242]. CD73 has a similar function in stroke,
where it regulates leukocyte (including T cell) trafficking
in the ischemic brain and serves as an outcome indicator
in MCAO mice [243, 244].

Retrospect and prospect

We have discussed the pathological overlap between
glioma and ischemic stroke. The interplay between these
two conditions is complex, particularly with the involve-
ment of extracellular vesicles, which efficiently facilitate
intracranial interactions. However, the precise influence
of glioma and glioma-derived EVs on the entire ischemic
stroke process remains unclear. We aim to speculate on
the impact of glioma as a risk factor for stroke, as well as
its effects during the pre-stroke phase, stroke onset, and
post-stroke recovery.

Glioma can be a risk factor for stroke. As an intracra-
nial tumor, its direct infiltration or compression of blood
vessels is evident and commonly observed in clinical
practice [7]. Additionally, the disruption of blood ves-
sels may lead to hemorrhagic stroke in glioma patients
[245]. Chronic activation of the coagulation system, par-
ticularly as part of paraneoplastic syndrome, represents
another mechanism by which glioma acts as a risk fac-
tor for ischemic stroke [246]. Coagulation abnormalities
are also a frequent postoperative and late complication of
radiotherapy, contributing to stroke risk through tumor-
induced hypercoagulability or nonbacterial thrombotic
endocarditis [9, 10].

Before the onset of stroke, chronic hypoxia and angio-
genesis may have already occurred. It is well established
that tumor hypermetabolism increases the demand for
nutrients and oxygen [97, 170-172]. Collateral circula-
tion and angiogenesis are likely enhanced in the tumor’s
hypoxic microenvironment, facilitated by angiogenesis-
related cargos from EVs. In the case of ischemic stroke
onset, as discussed previously, the inflammatory cascade
contributes to tissue damage by enlarging the infarct
area, increasing blood-brain barrier permeability, and
worsening cerebral edema. However, the immunosup-
pressive microenvironment created by glioma is specu-
lated to provide a protective function during ischemic
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stroke [247]. This protective effect may extend into the
recovery phase, as M2 polarization—an essential feature
of the glioma-associated immunosuppressive microen-
vironment—helps clear cellular debris via phagocyto-
sis and releases protective/trophic factors that promote
angiogenesis and neurogenesis [100, 248]. Additionally,
glioma-derived EVs carry cargos that overlap with angio-
genesis promoters are presumed to involve in stroke
recovery.

In the context of clinic therapy, the simultaneous
occurrence of glioma and ischemic stroke presents sig-
nificant challenges in stroke management. On one hand,
glioma’s direct invasion exacerbates brain tissue damage,
compresses and invades blood vessels, competes for oxy-
gen and nutrients, and worsens cerebral edema. On the
other hand, glioma-induced coagulation abnormalities
and vascular disruption complicate clinical anticoagula-
tion or antiplatelet therapies, increasing the risk of intra-
cranial hemorrhage.

Understanding the molecular interplay between glioma
and stroke, particularly through the involvement of EVs,
offers new insights into their shared pathophysiology and
provides potential therapeutic targets for managing both
conditions simultaneously. However, further research is
needed. The impact of glioma-derived EVs on ischemic
stroke progression has not been fully confirmed, and the
use of dual rodent models of glioma and stroke could
be instrumental in investigating this interaction. Lipi-
domic analysis or specific labeling could help determine
whether glioma-derived EVs play a role in the stroke-
affected region. As discussed, stroke presents distinct
characteristics in different phases, and the impact of gli-
oma on stroke is complex; therefore, each phase should
be studied separately. In the context of glioma, ischemic
stroke treatment also faces challenges, particularly in the
titration of anticoagulant or antiplatelet medications.

Though the therapeutic potential of glioma-derived
EVs appears promising, the therapeutic application of
glioma-derived EVs remains challenging and requires
further investigation. Firstly, as EVs serve as therapeu-
tic carriers, delivery efficiency and potential off-target
effects must be carefully evaluated, particularly in the
context of the blood-brain barrier [249]. Secondly, given
that EVs are biologically isolated vesicles, their heteroge-
neity poses a major challenge in ensuring reproducibility
and therapeutic consistency [250, 251]. Thirdly, consid-
ering the distinct pathophysiological stages of ischemic
stroke, optimal administration timing is a crucial factor
that must be optimized to maximize therapeutic efficacy.
Further research is warranted in the areas of drug deliv-
ery strategies, precise administration timing, advanced
purification techniques, and scalable biomanufacturing
processes to enhance the clinical translation of glioma-
derived EVs as a viable therapeutic approach.
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Conclusion

The pathology of glioma and ischemic stroke signifi-
cantly overlaps in their pathological processes, includ-
ing the regulation of cellular metabolism, inflammation,
coagulation, hypoxia, angiogenesis, and neural repair, all
of which involve shared biological factors. This overlap
is reflected in numerous clinical studies. Glioma-derived
EVs play a crucial role in mediating intracranial interac-
tions and shaping the tumor microenvironment, with
their cargos closely aligning with stroke-related biologi-
cal factors, which act as risk factors and participating
in the phases of hypoxia, stroke onset, progression, and
recovery. Therefore, though further studies are needed
to confirm their precise role, EVs have the potential to
mediate interactions between glioma and stroke and sug-
gest therapeutic potential.
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