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Human breast milk-derived exosomes 
attenuate lipopolysaccharide-induced 
activation in microglia
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Abstract 

Microglia mediate the immune response in the central nervous system to many insults, including lipopolysaccha-
ride (LPS), a bacterial endotoxin that initiates neuroinflammation in the neonatal population, especially preterm 
infants. The synthesis of the proinflammatory proteins CD40 and NLRP3 depends on the canonical NF-κB cascade 
as the genes encoding CD40 and NLRP3 are transcribed by the phosphorylated NF-κB p50/p65 heterodimer in LPS-
induced microglia. Exosomes, which are nanosized vesicles (40–150 nm) involved in intercellular communication, 
are implicated in many pathophysiological processes. Human breast milk, which is rich in exosomes, plays a vital 
role in neonatal immune system maturation and adaptation. Activated microglia may cause brain-associated injuries 
or disorders; therefore, we hypothesize that human breast milk-derived exosomes (HBME) attenuate LPS-induced 
activation of CD40 and NLRP3 by decreasing p38 MAPK and NF-κB p50/p65 activation/phosphorylation downstream 
of TLR4 in murine microglia (BV2). Human microglia (HMC3) showed a significant decrease in p65 phosphorylation. 
We isolated purified HBME and characterized them using nanoparticle tracking analysis, transmission electron micros-
copy, fluorescence-activated cell sorting, and western blots. Analysis of microglia exposed to LPS and HBME indicated 
that HBME modulated the expression of signaling molecules in the canonical NF-κB pathway, including MyD88, IκBα, 
p38 MAPK, NF-κB p65, and their products CD40, NLRP3, and cytokines IL-1β and IL-10. Thus, HBMEs have great poten-
tial for attenuating the microglial response to LPS.

Keywords Breast milk, Exosomes, Microglia, HMC3, BV2, Neonatal neuroinflammation, Lipopolysaccharide, NFκB, 
CD40, NLRP3, IL-1β, IL-10

Introduction
Microglia, the resident immune cells of the central nerv-
ous system (CNS),  are vital for axonal growth, immune 
surveillance, and maintenance of the neuronal circuitry. 
However, under hyperinflammatory conditions, they 
have deleterious effects on the surrounding brain tis-
sue, thereby contributing to neuroinflammatory  dis-
eases.  Microglia are the first responders to CNS injury 
and infiltration by foreign bodies. The activated microglia 
protect against various brain insults, but they also induce 
injury by initiating phagocytosis and secreting multi-
ple toxic cytokines, chemokines, and reactive oxygen 
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intermediates [1, 2]. Hypoxic-ischemic related brain 
damage in neonates is caused largely by microglial activa-
tion, which can be downregulated by inhibiting nuclear 
factor κ light-chain enhancer of activated B cells (NF-
κB) signaling [3]. Neonates, especially preterm infants, 
are also highly susceptible to infection, which results 
in a hyperinflammatory response and white matter loss 
with associated cognitive deficits [4, 5]. The Gram-neg-
ative bacteria that often cause these infections induce a 
dysregulated microglial response compared to the more 
regulated activation response from other inducers [4]. 
Microglia in the preterm infant brain respond to both 
infectious and sterile potentiators of neuroinflammation. 
Sterile inflammation invokes an immunologic response 
without initiation by a pathogen. This can be propa-
gated by the systemic release of cytokines from a chronic 
inflammatory state and by autoimmune diseases such as 
multiple sclerosis [5–7]. Neuroinflammation causes neu-
rodevelopmental damage that predisposes the infant to 
learning disorders, autism, schizophrenia, and epilepsy, 
among other disorders [8–10].

Lipopolysaccharide (LPS) is a potent Gram-negative 
bacterial endotoxin that drives systemic inflammation 
in neonates and is an adjuvant for an adaptive immune 
response [11, 12]. In response to LPS-induced endotox-
emia, various types of brain cells synthesize cytokines. 
Subsequently, peripheral granulocytes invade the CNS 
through the compromised blood–brain barrier, result-
ing in immunoreactivity and injury in the affected brain 
area [1, 2, 13–15]. LPS-induced neuroinflammation can 
lead to microglial activation associated periventricular 
WM loss [5]. Microglial activation leads to the signal-
ing of the nuclear factor κ light-chain enhancer of acti-
vated B cells (NF-κB) pathway, which causes the release 
of proinflammatory chemokines and cytokines, such as 
interleukin (IL)-1β, IL-6, IL-8, IL-18, and tumor necrosis 
factor-alpha (TNF-α). It also facilitates the production 
of key propagators of inflammation, CD40 and NLRP3. 
Both of these cause a secondary increase in proinflam-
matory cytokine production once their expression is 
enhanced [16]. Resting microglia show low expression 
of markers of antigen presentation, including CD40 [17], 
but after activation, microglia undergo various morpho-
logical modifications to express cell surface markers nec-
essary for antigen presentation to T cells [18]. NLPR3 is 
upregulated by pathogen-associated molecular patterns 
(PAMPs), such as LPS, and then, through secondary sign-
aling, forms the NLPR3 inflammasome, which activates 
and secretes proinflammatory cytokines IL-1β and IL-18 
[19]. Inflammasome activation can results from an exter-
nal secondary PAMP/damage-associated molecular pat-
tern (DAMP) [19] or self-recognizing patterns [20, 21]. 
Microglial CD40 and NLPR3 signaling is important in 

the progression of inflammatory disease, neurodegenera-
tive diseases, autoimmune diseases, and traumatic brain 
injury [19, 22–25].

Due to the severe consequences of microglia-mediated 
neuroinflammation, therapeutic options to attenuate 
microglial activation have long been under investigation. 
Options such as minocycline, edaravone, NSAIDs, caf-
feine, and azithromycin have shown promise, but adverse 
effects must be considered especially with long-term use 
[26–30]. MicroRNAs (miRNA) have demonstrated sig-
nificant immunomodulatory effects in microglia. Mi-146 
downregulates the NF-kB signaling cascade [31]; how-
ever, a delivery reservoir is needed to optimally deliver 
them to microglia. Exosomes derived from human breast 
milk are a natural carrier of this miRNA and many others 
[32].

Exosomes are 30–200  nm extracellular vesicles (EVs) 
derived from mammalian breast milk, blood, urine, 
semen, saliva, and cerebrospinal fluid [33, 34] that func-
tion in intercellular communication and in immunologi-
cal and pathophysiological processes [1, 2, 32, 33]. They 
reflect the composition and physiology of their cellular 
origin, including the proteins, lipids, and nucleic acids 
they carry [35]. A recent study identified hundreds of 
miRNA and proteins within human breast milk-derived 
exosomes (HBME) associated with immunological sign-
aling and diseases. Furthermore, they found three key 
proteins carried by HBME to have a direct antimicrobial 
effect [36]. Tetraspanins (CD9, CD63, CD81) are found in 
abundance on the exosome surface and are used to char-
acterize them. They also may be the mechanism by which 
exosomes target and access cells as we demonstrated in a 
past study [37]. CD9 can disrupt the TLR4 complex, thus 
inhibiting LPS-induced NF-κB signaling [38]. We have 
also previously shown their capability to protect intes-
tinal epithelial cells from oxidative stress [39]. Another 
study has shown their ability to protect the intestinal epi-
thelial lining in a necrotizing enterocolitis (NEC) mouse 
model [40]. Exosomes derived from the blood of young 
rats can decrease the stroke burden in aged rats by down-
regulating complement cascade-mediated microglia 
phagocytosis through the inhibitory capacity of the CD46 
protein they carry [41]. Our preliminary data shows that 
HBME also carry CD46, which has not previously been 
shown in the literature (Supplement 1). Packaging of 
cargo is a regulated and specific process [42], so they are 
expected to consistently generate similar results between 
batches. The low immunogenicity of HBME is an advan-
tage in the immature and sensitive immune system of 
preterm infants [43]. Their lipid bilayer allows them to 
survive transport across the blood–brain barrier and into 
the parenchyma and spinal cord [44, 45]. Their integrity, 
separation, and functionality are well preserved after 
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isolation and storage at − 80  οC for several months [46], 
making them a viable option for therapeutic and diagnos-
tic applications.

We propose, for the first time in the literature, that 
HBME attenuate microglial activation, thus serving as a 
potential treatment for neuroinflammation in neonates, 
especially preterm infants. Most infants have access 
to breast milk and thus to HBME as well. This biologi-
cally safe and readily available therapy has the potential 
to change the entire landscape of neonatal neuroinflam-
matory conditions and the sequalae of morbidities and 
mortalities that result. By treating both mouse (BV2) 
and human (HMC3) LPS-induced microglia to HBME, 
we demonstrate the novel therapeutic impact of HBME 

through molecular and morphological analysis. We 
hypothesize that HBME attenuate LPS-induced TLR4/
NF-κB signaling in mouse and human microglia, thus 
creating a clear path toward providing HBME as preven-
tive and responsive therapy for the highly vulnerable neo-
natal population (Fig. 1).

Materials and methods
Human breast milk collection
Human breast milk (HBM) was collected at the Univer-
sity of Alabama at Birmingham (UAB) Regional Intensive 
Care Unit. Breastmilk collection was approved by the 
UAB Institutional Review Board Protocol N160203002. 
Samples were recovered from patient feedings that were 

Fig. 1 HBME inhibit LPS activated canonical NF-kB pathway in microglia and its effectors. HBME seems to enact inhibitory effect either upstream 
of the TLR4 signaling pathway or directly on different molecules within the cascade. LPS activates the TLR4 receptor causing the activation of two 
proinflammatory transcription factors, p38 MAPK and the NF-kB p50/p65 heterodimer, ultimately leading to the increased production of key 
promotors of the microglial immune response. TLR4 relies on the subsequent activation of its adapter protein, MyD88 to potentiate downstream 
protein activation. The phosphorylated p38 MAPK translocates directly to the nucleus to produce the proinflammatory mediators IL-1b and NO, 
and the anti-inflammatory cytokine IL-10 through downstream mechanisms. Separately, p38 MAPK further potentiates the activation of NF-kB. 
The literature suggests that p38 phosphorylates IkBa just as the IKK trimer complex does, thus freeing NF-kB to phosphorylate and translocate 
to the nucleus where it produces key proinflammatory mediators. CD40 will be incorporated into the plasma membrane to recognize its ligand 
and further activate microglia. Pro-IL-1b must be cleaved into its active form via the caspase-1 protease found within the NLPR3 inflammasome’s 
multi-protein structure. For NLRP3 to become active and integrated into its inflammasome, a secondary PAMP or DAMP such as the HMGB1 
protein must activate it. IL-1b and NO, along with several other proinflammatory cytokines and chemokines, are released from microglia 
propagating a neuroinflammatory response. Due to these mounting effects, microglial activation can lead to an exaggerated inflammatory 
response and subsequent CNS toxicity. HBME: Human breast milk derived exosomes; LPS: Lipopolysaccharide; TLR4: Toll-Like Receptor 4; MAPK: 
Mitogen-activated protein kinases; NF-kB: Nuclear factor kappa B; MyD88: Myeloid differentiation primary response 88; IL-1b: interleukin one 
beta; NO: nitric oxide; IL-10: interleukin 10; IkBa: Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor alpha; IKK: Inhibitor 
of nuclear factor-κB kinase; CD40: Cluster of differentiation 40; NLRP3: nucleotide-binding oligomerization domain-like receptor protein 3; PAMP: 
Pathogen-associated molecular patterns; DAMP: Damage-associated molecular patterns; HMGB1: High mobility group box1
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not completely consumed and would have been dis-
carded. The initial experiments used individual samples; 
however, to improve consistency, we later pooled donor 
milk, which was pasteurized using the Holder technique 
[47]. Milk donors pass a standard health screening to 
become eligible. Since the milk samples were scavenged, 
there was no need for ethical consideration. Exosomes in 
the milk samples were isolated and purified for immedi-
ate use or stored at − 80 ℃.

Extracellular vesicle isolation and purification
HBM was diluted 1:10 in sterile phosphate-buffered 
saline (PBS), centrifuged at 300 ×g (1300 revolutions per 
minute [rpm]) for 10 min, and the supernatant was cen-
trifuged again at 2600 ×g (3900 rpm) for another 10 min. 
The supernatant was filtered through a sterile 0.22  µm 
filter using a 10 mL syringe and centrifuged at 20,000 ×g 
(10,800 rpm) for 45 min in an SW41T1 swinging bucket 
rotor at 4 °C using a Beckman Coulter Optima ™ L-70 K 
Ultracentrifuge. The resulting supernatant was further 
centrifuged at 110,000 ×g (32,000 rpm) for 70 min at 4 °C 
using a Beckman Coulter Optima ™ L-70 K Ultracentri-
fuge to collect the EV particles in the pellet, which were 
resuspended in sterile PBS.

Nanoparticle tracking analysis
HBME particle size and concentration were determined 
by nanoparticle tracking analysis (NTA). The samples 
were diluted in PBS in a 1  mL disposable syringe. The 
samples were analyzed using the Nano-Sight NS 300 
Sub-Micron Particle Imaging System (Malvern Instru-
ments, Inc., Malvern, UK) and NTA v3.0 software. In 
this system, a laser light source illuminated the exosome 
particles, which were then analyzed based on Brownian 
motion by a semiconductor camera. For each reading 
frame, the mean values were recorded and analyzed.

Transmission electron microscopy
Transmission electron microscopy (TEM) was used to 
confirm the size and structure of EVs in the exosome 
samples. Carbon film-coated mesh copper EM-grids 
were glow discharged at 50  mA for 20  s before loading 
7 µL of the exosome suspension on the grid and incubat-
ing for 1  min at room temperature (RT). Samples were 
stained immediately with 7  µL of filtered uranyl acetate 
(UA) solution on the surface of the EM-grid. After 15 s, 
the excess UA solution was removed, and samples were 
observed within 24 h under the TEM Tecnai 120 kV (FEI, 
Hillsboro, OR) at 80 kV and compared to the negatively 
stained grids. Digital images were captured with a Bio-
Sprint 29 CCD camera (AMT, Woburn, MA).

Fluorescence‑activated cell sorting
For ImageStream analysis, isolated HBME (approxi-
mately  107–109 exosome count) were suspended/washed 
in PBS. The exosomes were fixed with 2% paraformal-
dehyde for 15 min on ice. Next, they were blocked with 
anti-human CD16/CD32 APC block for 30  min. They 
were stained with APC-CD81 (1:100), FITC-CD63 
(1:100), and PE-CD9 (1:100) antibodies with the respec-
tive isotype controls in 100 µL of fluorescence-activated 
cell sorting (FACS) buffer for 30  min and analyzed by 
ImageStream (BioLegend CA, USA).

Microglia cell culture and treatment with LPS and/or HBME
BV2 microglial cells were grown in Roswell Park Memo-
rial Institute (RPMI) 1640 media, supplemented with 10% 
FBS, 1% penicillin/streptomycin, and 0.5 µg/mL ampho-
tericin B (Gibco, Thermo Fisher Scientific, Rockford, IL, 
USA). Human cell line 3 (HMC3) microglial cells (ATCC, 
USA) were grown in Eagle’s Minimum Essential Media 
(EMEM), supplemented with 11.2% fetal bovine serum, 
1% penicillin/streptomycin, and 0.5 µg/mL amphotericin 
B (Gibco, Thermo Fisher Scientific, Rockford, IL, USA). 
Glial cells at 70–80% confluency were transferred to 
6-well plates and treated with the four following condi-
tions: (1) PBS (normal control), (2) 100 ng/mL or 1 µg/
mL of LPS, (3) 5 or 10 µg/mL of HBME, or (4) simulta-
neously with LPS (100 ng or 1 µg/mL) and HBME (5 or 
10 µg/mL) simultaneously for 0, 0.25, 0.5, 1, or 24 h.

Cell viability
Cell viability was measured by trypan blue staining in the 
Invitrogen Countess 2 automated cell counter. In brief, 
10 µL of 0.4% trypan blue solution was mixed with 10 µL 
of the sample, and the device was used to measure cell 
number and viability in 10 µL of the mixture on a micro-
scope slide.

mRNA sequencing (mRNA‑seq) analysis
RNA was extracted from microglial cells using 0.75  mL 
Trizol LS reagent (ThermoFisher Scientific, USA) per 
0.25 mL of BV2 cell pellet. Samples were homogenized, 
centrifuged at 12,000 ×g for 5 min at 4 ºC, and incubated 
for 2–5 min after adding 0.2 mL of chloroform. The aque-
ous phase was collected after centrifugation at 12,000×g 
for 15 min at 4 ºC. RNA in the pellet was washed in 75% 
ice-cold ethanol diluted in DEPC water for 5  min at 
7500 ×g at 4 ºC and quantified by Nanodrop. RNA sam-
ples from treatment and control groups were tested for 
quality and processed for mRNA-seq, bioinformatics, 
and pathway analysis by Novogene NC, USA (https:// en. 
novog ene. com). Briefly, 1  μg of RNA was used to gen-
erate sequencing libraries on the Illumina HiSeq 2500 

https://en.novogene.com
https://en.novogene.com
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platform. A cutadapter software tool was used to remove 
the adapter sequences. Paired-end clean reads were 
aligned to the mouse genome (mm10) using the Spliced 
Transcripts Alignment to a Reference (STAR) software. 
The mapped reads were generated by FeatureCounts. 
Differential expression analysis was performed by edgeR 
(thresholds: fold change > 1.5, P < 0.05).

RT‑qPCR assay
RNA was extracted from BV2 cells using Direct-zolTM 
RNA MiniPrep (cat#R2052, ZYMO Research) or Trizol 
method and treated with DNase I and proteinase K to 
purify the RNA. Then, 500 ng of total RNA was reverse 
transcribed into cDNA using the PrimeScriptTMRT 
Reagent kit (cat#RR037Q, Takara). Quantitative real-
time PCR was performed using Lunar Universal qPCR 
Master Mix (New England Biolabs, Ipswich, MA, USA). 
Changes in relative expression were calculated by the 
 2ΔΔCt method, normalized to GAPDH. Primer sequences 
are as follows: CD40, F: 5′-TTG TTG ACA GCG GTC 
CAT CTA-3′; R: 5′-GCC ATC GTG GAG GTA CTG 
TTT-3′; GAPDH, F: 5′-AGG TCG GTG TGA ACG 
GAT TTG-3′; R: TGT AGA CCA TGT AGT TGA GGT 
CA-3′.

Western blot (WB)
Protein was extracted from cells in Pierce RIPA buffer 
(Thermo Scientific, USA) with proteinase and phos-
phatase inhibitors (Millipore Sigma, Burlington, MA, 
USA). For WB analysis, protein concentrations were esti-
mated using the bichloroacetic acid (BCA) protein assay 
kit (Thermofisher Scientific, USA). 10–25  μg of protein 
from HBME and microglia (BV2 and HMC3) lysates were 
resolved on 10% sodium dodecyl sulfate–polyacryla-
mide gel electrophoresis (SDS-PAGE) gels at 100 V. The 
gels were subsequently electroblotted onto nitrocellu-
lose (Thermofisher Scientific, Rockford, IL, USA; GVS, 
Bologna, Italy), polyvinylidene fluoride, or polyvinylidene 
difluoride (PVDF) (Millipore Sigma, Burlington, MA, 
USA) membranes at 15 V. Membranes were blocked with 
5% non-fat milk (SKU: 30620074-1, BioWorld, Dublin, 
OH, USA) and detected by overnight incubation with an 
appropriate dilution of primary antibody (Supplemen-
tary Table  1). Membranes were then incubated with an 
appropriate horseradish peroxidase (HRP)-conjugated 
secondary antibody (Supplementary Table 1) in 2% non-
fat milk (SKU: 30620074-1, BioWorld, Dublin, OH, USA) 
for 2  h. Membranes were washed with 1 × Tris-buffered 
saline with 0.1% Tween® 20 (TBST) between each incu-
bation step. Protein expression was detected by a chemi-
luminescent substrate (Cat #: XR92, Alkali Scientific, 
Fort Lauderdale, FL, USA; Millipore Sigma, Burlington, 
MA;) followed by exposure of the membrane to film that 

was developed in a film processor (SRX 101-A, Konica 
Minolta Medical and Graphics, INC, Tokyo, Japan).

Enzyme‑linked immunosorbent assay (ELISA)
Secreted mouse IL-1β (Catalog #: DY401) and IL-10 
(Catalog #: DY417) from BV2 microglia and secreted 
human IL-1β (Catalog #: DY201) from HMC3 microglia 
were measured in undiluted cell medium supernatants 
using DuoSet ELISA kits (R&D Systems). Protocol was 
followed as provided by the company. Absorbance was 
determined at 450 nm with subtraction of a 570 nm ref-
erence wavelength using the Epoch™ microplate reader 
(BioTek Instruments Inc.).

Immunocytochemistry
BV2 and HMC3 cells were treated as previously 
described except in this case BV2 cells were treated with 
5 µg/mL of HBME, while HMC3 were treated with 10 µg/
mL. The cells were fixed in 1% PFA and permeabilized 
with 0.5% Triton X for 15 min each. Cells were blocked in 
5% FBS for 30 min. Cells were probed overnight with the 
appropriate primary antibody: CD40 (1:100, Cell Sign-
aling, Cat #: 86165) or Iba1 (1:100, Thermo Scientific, 
Catalog # PA5-27436). They were stained in secondary 
antibody goat anti-rabbit 488 (1:2000, Cell signaling,) for 
one hour. Cells were then stained with rhodamine phal-
loidin (100 nM, Cytoskeleton, Cat. # PHDR1) for 30 min 
before being mounted with ProLong™ Diamond Anti-
fade Mountant with DAPI (Catalog number P36962). The 
cells were visualized with the Nikon Eclipse 80i scope 
and imaged using a Photometrics Coolsnap Myo mono-
chrome camera on the Nikon Elements Software.

Statistical analysis
The difference between two groups was analyzed using 
the student’s t-test. For multi-group comparisons, one-
way ANOVA was used with the Fisher least significant 
difference test for post-hoc analysis. Due to the relatively 
low sample size, an outlier and normality test was also 
performed. Statistical significance was set to P < 0.05. 
Analysis was performed with Microsoft Excel and Graph-
Pad Prism. Data are presented as mean ± standard error 
of the mean (SEM).

Results
Characterization of HBME
HBME characterized by NTA and TEM ranged in diam-
eter from 50 to 150 nM (Fig. 2A) [48] moreover, western 
blot and ImageStream analysis showed exosome markers 
CD9, CD63, and CD81 on isolated particles (Fig. 2B–D).
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HBME increase the viability of LPS‑induced BV2 microglia
BV2 microglia were incubated with LPS (1  µg/mL) and 
HBME (10  µg/mL) for 24  h. LPS treatment decreased 
microglial viability compared to the control (P = 0.006), 
which was largely restored by HBME (Fig.  3A; 
P = 0.0109). Our data suggest an increase in LPS-induced 
microglia after HBME treatment. Although there were 
fewer microglia after LPS induction, there was likely a 
higher percentage of activated cells, which would account 
for the increase in proinflammatory markers.

HBME attenuate CD40 expression in LPS‑induced BV2 
microglia
The mRNA-seq analysis of BV2 cells incubated with 
LPS for 24  h identified 156 genes that were downregu-
lated and 17 genes that were upregulated compared 
to the control (Fig. 3B). The addition of HBME to LPS-
stimulated cells led to the downregulation of 136 genes 
and the upregulation of 25 genes (Fig. 3C). Among the 14 
genes that we selected for further analysis, CD40 plays an 
important role in microglia-mediated hyperinflammatory 
disease, and its expression in LPS-induced microglia was 
greatly affected by HBME (Fig.  3D). We confirmed that 

HBME downregulated the mRNA (Fig.  3E; P = 0.0432) 
and protein expression (Fig.  3F; P = 0.0093) of the gene 
encoding CD40 compared to LPS treatment alone by RT-
qPCR and WB analysis, respectively.

HBME modulate intracellular signaling pathway molecules 
in LPS‑induced BV2 and HMC3 microglia
We showed that HBME treatment increases the expres-
sion of MyD88 and IκBα while decreasing the activa-
tion of p38 MAPK and NF-κB p65 in BV2 microglia 
simultaneously stimulated with LPS. MyD88 expression 
decreased in LPS-induced BV2 microglia compared 
to the control (P = 0.037) but increased after treat-
ment with HBME for 1  h compared to the LPS-treated 
group (P = 0.0238). Interestingly, after LPS-induced BV2 
microglia were treated with HBME, MyD88 expression 
exceeded the control (P = 0.0905) and microglia treated 
with HBME alone (P = 0.0983) (Fig.  4A). IκBα expres-
sion decreased in LPS-induced microglia compared to 
the control after 1 h (P = 0.0071) and 24 h (P = 0.0092) but 
increased after treatment with HBME for 1  h and 24  h 
compared to the LPS-treated group (Fig.  4B; P = 0.0131 
and P = 0.0063, respectively). Treatment of microglial 

Fig. 2 Characterization of Human Breast Milk-derived Exosomes. A Exosome size, number, and morphology were evaluated using NTA and TEM 
and were found to be in the expected size range and of the expected morphology. Exosome expression of the tetraspanin molecules CD9, CD63, 
and CD81 were verified using B WB analysis to demonstrate the presence of these exosome-specific markers in exosome protein lysate and C 
FACS analysis to demonstrate their presence on the surface of live, intact exosomes. Each tetraspanin was compared to a IgG isotype control 
to account for nonspecific binding. n ≥ 3. NTA: Nanosight tracking analysis; TEM: transmission electron microscopy; WB: western blot; FACS: 
fluorescence-activated cell sorting
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cells with HBME decreased the LPS-induced phospho-
rylation of p38 MAPK after 15 min (Fig. 4C; P = 0.0393) 
and NF-κB p65 after 1 h (Fig. 4D; P = 0.0084). The limita-
tions to using BV2 mouse microglia require demonstra-
tion of our findings in other mammalian cells, especially 
human cells. Thus, we used HMC3 cells to investigate 
whether HBME attenuate LPS-induced activation in 
higher-order cell types. We found that HBME down-
regulated NF-kB p65 activation in LPS-induced HMC3 
microglia (Fig. 7A; P = 0.0081).

HBME decrease the expression of intracellular 
inflammatory markers and morphological changes 
in LPS‑induced BV2 and HMC3 microglia
The decrease in the activation of transcription fac-
tors NF-κB p50/p65 and p38 MAPK after treatment of 
LPS-induced BV2 microglia with HBME also affected 
expression of the CD40, NLRP3, IL-1β, and IL-10 effec-
tor molecules. Expression of CD40, NLRP3, and IL-1β 
increased after LPS treatment but decreased after the 
addition of HBME (Fig.  5A–C; P = 0.026, P = 0.0365, 
and P = 0.031). In contrast, expression of IL-10 in LPS-
induced BV2 microglia decreased compared to the 
control (P < 0.0001) and increased after treatment with 
HBME (Fig. 5D; P = 0.0177). Additionally, the expression 

of CD40 on imaging of LPS-induced BV2 microglia had 
a demonstrative decrease in expression with HBME 
costimulation. A similar effect on Iba-1 expression was 
noted in LPS-induced HMC3 microglia. Both LPS-
induced cell types showed a return to morphology more 
representative of resting microglia after HBME costimua-
tion (Fig. 6).

HBME alter the secretion of cytokines from LPS‑induced 
BV2 and HMC3 microglia
Using ELISA, we demonstrated that treatment of micro-
glial cells with HBME reduced LPS-mediated IL-1β 
secretion in BV2 and HMC3 cells (Fig.  5E, P = 0.0301; 
Fig.  7B, P = 0.2709, respectively). HBME also increased 
IL-10 secretion from LPS-induced BV2 microglia 
(Fig. 5F; P = 0.0178). These results demonstrate the anti-
inflammatory effects of HBME. Further experiments 
are needed to confirm cytokine response in HMC3 
microglia.

Discussion
Our results indicate that HBME inhibit the expression 
of LPS-induced proinflammatory proteins in micro-
glia. As preterm neonates are very vulnerable, we need 
biologically safe and readily available therapeutics to 

Fig. 3 Effects of HBME on cell survival and CD40 expression in LPS-induced BV2 microglia. CD40 expression was determined in BV2 microglia 
treated with PBS (NC), LPS (1 µg/mL), and/or HBME (10 µg/mL) from a single breast milk sample for 24 h. A Survival of BV2 microglia cells 
was measured with trypan blue using a Countess 2 automated cell counter (n = 12) B, C Differential expression analysis for LPS-treated 
or LPS- and HBME-treated microglia. RNA-seq data were analyzed by edgeR (threshold was set as fold change > 1.5, p < 0.05). D 14 of the analyzed 
genes that are important in LPS-induced inflammatory processes were displayed on a heatmap for more direct comparison E RT-qPCR of gene 
encoding CD40 in multiple experiments (n = 3). F WB image for expression of CD40 with densitometry (Image J) analysis for each sample (n = 7). 
Quantified densitometric ratios normalized to GAPDH. Bars represent the mean ± SEM, n ≥ 3/group, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 
by ANOVA followed by Fisher’s least significant difference post-hoc multiple comparison test. HBME, human breast milk-derived exosomes
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combat common neonatal pathologies. Human breast 
milk exosomes can protect against NEC [49, 50] and 
microbial infections [36]. These exosomes contain cargo 
that has significant anti-inflammatory potential. Bovine 
milk exosomes carry signaling proteins for immune 
cell receptors, phagocytosis, and cytotoxicity [51], and 
HBME are likely to have the same properties. As intes-
tinal diseases such as NEC often lead to neurodevel-
opmental delays in preterm neonates and has been 
extensively studied [52, 53], we aimed to add perspective 
on the much needed area of neuroprotective potential 
of exosomes. Systemic illness originating from various 
sources leads to brain injury largely resulting from micro-
glial activation [54–56]. We targeted microglia as both 
exosomes and microglia regulate the immune response 
and inflammation.

Among the many genes showing LPS-induced changes 
in expression, the gene encoding CD40 was the most 
interesting because upregulation of the CD40 receptor 
amplifies the immune cell response in human microglia 

[57], exaggerating the neuroinflammatory response and 
potentially increasing autoinflammatory disease [58, 59]. 
The role of microglia in CNS disorders such as multiple 
sclerosis and Alzheimer’s disease [60, 61] prompted our 
interest in the regulation of CD40 expression in these 
cells. The expression of the CD40 receptor on the sur-
face of microglia orchestrates peripheral leukocyte infil-
tration and retention in the CNS [62]. Compared to the 
adult brain, the neonatal immune system is immature, 
but it mounts a robust response, especially to the LPS 
endotoxin [8–10, 43]; thus, CD40 may play a key role in 
this process. Our results on the effects of HBME on BV2 
microglial cell survival and CD40 expression (Fig. 3) led 
us to investigate the intracellular pathway(s) affected by 
HBME that underlie this change in CD40 expression. The 
morphological changes and proinflammatory mediator 
response inhibited by HBME in BV2 and HMC3 cells also 
led us to investigate internal mechanisms (Fig. 6).

LPS induces the binding of transcription factor NF-κB 
p50/p65 to the promotor of the gene encoding CD40 in 

Fig. 4 Effects of HBME on the TLR4/NF-kB signaling pathways in LPS-induced BV2 microglia. Expression of proteins in the NF-kB pathway affected 
by LPS stimulation of microglia was determined by WB analysis. Cells were treated with PBS (NC), LPS (1 µg/mL), and/or HBME (10 µg/mL) 
for 15 min, 1 h, or 24 h. Quantified densitometric ratios normalized to GAPDH (A, B) or total p38 (C)/total NFkB p65 (D). Representative WB images 
of A MyD88, B IkBa, C MAP kinase p38, and D NF-kB p65 after exposure to experimental conditions are disclosed. Densitometry (Image J) analysis 
for each sample. Bars represent mean ± SEM, n = 3, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 by one-way ANOVA followed by Fisher’s least 
significant difference post-hoc multiple comparison test
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microglial nuclei via the TLR4 pathway [17, 63, 64]. We 
demonstrated that HBME inhibited the activation of the 
p65 component in the p50/p65 heterodimer by decreas-
ing the expression and activation of MyD88, IκBα, and 
p38 MAPK, which are key molecules upstream of the 
TLR4 pathway [65–67]. Without activation of MyD88, 
TLR4 will not activate, and the IKK complex and p38 
MAPK will also fail to activate, thereby arresting the 
NF-κB pathway [20, 21]. Our results show a decrease in 
MyD88 expression in LPS-induced BV2 microglia, in 
contrast to the increase seen in previous studies [66, 68, 
69]. HBME not only restored the protein level but also 

increased expression above the control. The difference in 
MyD88 expression in our study may be due to the shorter 
time of exposure compared to previous studies [69]. The 
differences may also reflect negative feedback through 
ubiquitination or deubiquitination of MyD88, leading to 
receptor internalization/downregulation and/or protea-
somal degradation after LPS treatment [70–72]. Further-
more, the ability of HBME to upregulate MyD88 (Fig. 4A) 
may be due to the capacity of some proteins carried by 
exosomes to alter the signaling of immune cell recep-
tors [51]. How this leads to the downregulation of down-
stream molecules requires further investigation.

Fig. 5 Effects of HBME on inflammatory markers in LPS-induced BV2 microglia. Expression of NF-kB pathway downstream effectors of inflammation 
by LPS stimulation of microglia was determined by WB analysis and ELISA. Cells were treated as previously described for 24 h. Quantified 
densitometric values were graphed and representative WB images were disclosed for A CD40 (n = 4), B NLRP3 (n = 5), C IL-1b (n = 6), and D IL-10 
(n = 8). Densitometric (Image J) analysis for each sample. ELISA analysis represented for E IL-1b (n = 6) and F IL-10 (n = 5). Bars represent mean ± SEM, 
n ≥ 3, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 by one-way ANOVA followed by Fisher’s least significant difference post-hoc multiple 
comparison test
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Fig. 6 HBME inhibit the proinflammatory response and morphological changes of LPS-induced microglia. Immunofluorescence staining 
on microglial cells demonstrates HBME-mediated reduction in morphological changes and proinflammatory marker expression reflective 
of LPS-induced microglial activation. A BV2 microglia were treated with PBS (NC), LPS (1 µg/mL), and/or HBME (5 µg/mL) for 24 h and probed 
for CD40, phalloidin (F-actin), and DAPI. B HMC3 microglia were treated with PBS (NC), LPS (1 µg/mL), and/or HBME (10 µg/mL) for 4 h and probed 
for Iba-1, phalloidin (F-actin), and DAPI
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IκBα is targeted for proteasomal degradation [73]. Our 
data indicated that HBME directly and indirectly stabi-
lized IκBα in the BV2 cytoplasm, thereby increasing its 
adherence to p50/p65 compared to the untreated LPS 
group (Fig.  4B) [65, 67]. Decreased p38 MAPK expres-
sion after HBME treatment in BV2 microglia (Fig.  4C) 
will decrease activation of its downstream kinases, MK2 
and MSK1/2, thereby decreasing NF-κB p50/65 function-
ality and proinflammatory cytokine production. MSK1/2 
independently promotes the expression of anti-inflam-
matory cytokines IL-10 and the IL-1 receptor antago-
nist (IL-1ra) and promotes the dephosphorylation of p38 
through a negative feedback loop after its initial proin-
flammatory effects [74]. MSK1/2 is inhibited by MK2 
[75], which may account for the increase in intracellular 
and secreted IL-10 (Figs. 5D and 6B). Activation of IκBα 
by p38 MAPK will also be mitigated when MK2 inhibits 
MSK1/2 [65, 67]. HBME may initiate a switch in MSK1/2 
and inhibit p38 MAPK directly to promote its anti-
inflammatory effects in microglia more quickly. These 
changes caused by HBME culminate in the decreased 
phosphorylation of NF-κB p65 (Figs. 4D and 7A), and the 
activation of the p65 component is largely responsible for 
the transcriptional activity of the p50/p65 heterodimer 
[76].

Neuroinflammation is mediated by the secretion of 
proinflammatory cytokines, especially the potent IL-1β 
[77], from various cells in the brain, particularly micro-
glia and invading immune cells. HBME treatment of 
BV2 and HMC3 microglia decreased the production and 
secretion of IL-1β (Figs. 5C, 6A and 7B), inducing micro-
glial hyperactivation because IL-1β stimulates microglial 

signaling through its receptor along with LPS-TLR4 
signaling [77]. IL-1β must be activated to cause cellular 
changes, and the NLRP3 inflammasome activates IL-1β. 
The decrease in NLRP3 and IL-1β expression observed 
in microglia (Fig. 5B, C) suggests that NLRP3 inflamma-
some activation also decreased.

IL-10 counters proinflammatory effector molecules [78, 
79] thus, a deficiency in this anti-inflammatory cytokine 
is linked to chronic inflammatory conditions, such as 
inflammatory bowel diseases, enteropathies, and auto-
immune disorders, and to exacerbation of chronic organ 
conditions such as liver and kidney disease, and hyper-
sensitive disorders, such as asthma [4]. Recombinant 
IL-10 was used to treat autoimmune and chronic inflam-
matory diseases in mouse and human trials, respectively 
[80, 81]. T cells are an abundant source of IL-10, and their 
response is decreased by IL-10 [4, 82]. IL-10 may also 
decrease CD40L presentation to LPS-induced microglia 
that are highly expressing CD40 because T cells com-
monly express CD40L [83]. Although most immune cells 
secrete IL-10 during inflammation, a delayed response 
results in significant brain insult before IL-10 can coun-
ter those effects [84]. Here, we demonstrated that HBME 
induced the production and secretion of IL-10 by micro-
glia (Fig. 5D; Fig. 6B). Co-culture studies with microglia 
and T cells would provide further insight into the role of 
IL-10 in HBME-mediated anti-inflammatory effects.

The temporal sequence of gene expression and enzyme 
activation is critical in transcriptional programs, but the 
transcription of genes is often transient. For example, 
LPS-induced activation of NF-kB p50/p65 via MyD88-
dependent pathways leads to its association with the 

Fig. 7 Effects of HBME on intracellular signaling and cytokine secretion from LPS-induced HMC3 microglia. Expression of proteins in the NF-kB 
pathway affected by LPS and/or HBME stimulation of microglia was determined by WB and ELISA analysis. Cells were treated with PBS (NC), LPS 
(1 µg/mL), and/or HBME (10 µg/mL) for 1 h. A Representative WB image and the quantified densitometric ratios normalized to GAPDH of NFkB 
p65 are shown (n = 6). B ELISA analysis of IL-1b secretion from cells into the media represented (n = 3). Bars represent mean ± SEM, n ≥ 3, *p < 0.05, 
**p < 0.01, ***p < 0.001, ****p < 0.0001 by one-way ANOVA followed by Fisher’s least significant difference post-hoc multiple comparison test
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CD40 promoter, while p38 MAPK’s activation promotes 
MK2 to become associated with the IL-1β promoter 
region [65, 67, 85–88]. Thus, the expression and activ-
ity of pathway molecules were affected within one hour 
of LPS induction and HBME treatment. The response of 
IκBα to LPS and HBME treatment at both one h and 24 h 
suggests either a wide timeframe for expression of this 
molecule or a biphasic response due possibly to its role 
in different pathways, such as tumor suppressor p53 [89]. 
This may also be a species-specific response, as this was 
observed solely in BV2 cells. Thus, it is critical to identify 
a rapid response for the treatment of neonates. This study 
is limited by the genotypic/phenotypic differences com-
mon in in vitro studies and immortalized cell lines. The 
confirmation of these findings in human microglia show-
ing the ability of HBME to downregulate NF-kB p65 and 
IL-1β in the microglia-mediated inflammatory cascade 
implies that this treatment may be translational to human 
subjects. Here, HBME is a suppressor of LPS-induced 
signaling and proinflammatory output in HMC3 micro-
glia. These results must be confirmed in animal studies, 
and further studies are needed to develop HBME as a 
novel and safe therapy for preterm neonates.

Conclusion
We demonstrated that HBME decreased the production 
of proinflammatory mediators CD40, NLRP3, and IL-1B 
by inhibiting the TLR4/MyD88/NF-kB signaling pathway 
in LPS-induced BV2 microglia. The findings in HMC3 
microglia imply that HBME affect human microglia in 
similar manner to that shown in mouse microglia. Treat-
ment of neonates requires a rapid response to an infec-
tious or sterile insult; thus, this study provides evidence 
to further study the role of HBME as a strategic interven-
tion in neuroinflammation.
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