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Abstract 

Lipid droplets (LDs), serving as the convergence point of energy metabolism and multiple signaling pathways, 
have garnered increasing attention in recent years. Different cell types within the central nervous system (CNS) can 
regulate energy metabolism to generate or degrade LDs in response to diverse pathological stimuli. This article pro-
vides a comprehensive review on the composition of LDs in CNS, their generation and degradation processes, their 
interaction mechanisms with mitochondria, the distribution among different cell types, and the roles played by these 
cells—particularly microglia and astrocytes—in various prevalent neurological disorders. Additionally, we also empha-
size the paradoxical role of LDs in post-cerebral ischemia inflammation and explore potential underlying mechanisms, 
aiming to identify novel therapeutic targets for this disease.
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Background
The lipids are crucial small molecule compounds that 
play essential roles in brain function and homeostasis. 
They not only serve as structural components of cell 
membranes and provide fuel for energy metabolism, but 
also act as vital signaling molecules involved in cellular 
communication [1].

The lipid droplets (LDs) are recognized as dynamic 
intracellular organelles that play a crucial role in the stor-
age, metabolism, and distribution of lipids [2]. The are 
spherical cellular organelles, primarily consisting of two 
hydrophobic core lipids, triacylglycerol (TAG) and cho-
lesterol ester (CE), enclosed by a phospholipid monolayer 

and serving as the primary storage site for neutral lipids 
in neurons, glia cells, and other cells within the CNS (cer-
ebral nervous system) [3, 4]. LDs exhibit a wide range of 
sizes, spanning from nanometers to microns, and dem-
onstrate highly dynamic properties, as they may undergo 
changes in size, shape, and composition under stress 
conditions [5]. LDs play a role in various cellular pro-
cesses, such as providing substrates for cellular energy 
metabolism, promoting cell proliferation, responding to 
metabolic stress, and releasing inflammatory mediators 
[6–11]. However, the formation mechanisms, composi-
tion, biological effects, etc. of LDs triggered by different 
stimuli vary significantly and may even exhibit contrast-
ing characteristics across various diseases, pathological 
stages, and cell types.

In this review, we provide a comprehensive review of 
the biogenesis and degradation processes of LDs in the 
nervous system, along with an exploration of the diverse 
roles and regulatory mechanisms governing LD-contain-
ing cells in aging, neurodegenerative diseases, cerebral 
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ischemia, and glioma. The objective of this review is to 
enhance our understanding of the involvement of LDs in 
both physiological and pathological processes within the 
nervous system.

The composition of LDs
The predominant neutral lipids within the LDs core are 
CEs and TAGs, with their relative proportions vary-
ing according to cell types [12]. For instance, the LD 
core of adipocytes is predominantly composed of TAGs, 
whereas that of macrophages primarily consists of CEs 
[13]. In certain specialized cell types, the LD core may 
also encompass retinyl esters, waxes, ether lipids, and 
other lipophilic compounds such as fat-soluble vitamins 
[14, 15]. These lipids are encased by a polar, amphip-
athic phospholipid monolayer. In the LDs of mammalian 
cells, phosphatidylcholine (PC) serves as the predomi-
nant surface lipid and is crucial for the emulsification 
of LDs, functioning as a surfactant for LDs and playing 
a crucial role in lipid emulsification, regulating morphol-
ogy and expansion of LD [16]. The following compounds 
are phosphatidyl ethanolamine (PE) and phosphatidyl 
inositol (PI). However, compared to other biological 
membranes, LDs lack phosphatidylserine (PS) and phos-
phatidic acid (PA) [3, 17, 18].

In addition to the neutral lipid core containing choles-
terol esters and triglycerides, the phospholipid monolayer 
on the surface of LDs also encompasses several proteins 
involved in lipid metabolism [15, 19–21]. During the 
process of LD formation, distinct protein groups regu-
late their development, maturation, and degradation [22, 
23]. These proteins can be categorized into two groups 
based on their origin: Class I proteins are situated in the 
endoplasmic reticulum (ER) and translocate from the ER 
to LD during the process of LD formation. Subsequently, 
they accumulate at the surface of LD via the ER-LD path-
way. Class II proteins are localized in the cytoplasm and 
are directed to the surface of LDs from the cytoplasm as 
required for development or cellular metabolism [24].

Seipin, a Class I protein primarily localized within the 
internal membrane tubules of the ER, is involved in the 
early stages of LD formation by stabilizing TAG clus-
ters and facilitating their recruitment, thereby promot-
ing local aggregation of lipid crystals. Changes in Seipin 
expression may result in abnormal shapes and quantities 
of LDs [25–27]. In addition, fat storage-inducing trans-
membrane protein 2 (FIT2), which is localized within the 
enrichment regions of ER tubules, not only modulates 
the morphology of the ER but also interacts with diacyl-
glycerol (DAG) and TAG, leading to their accumulation. 
Subsequently, FIT2 engages with ER tubule-forming pro-
teins and the cytoskeletal protein septin7 to modulate 
the curvature of oil lens and facilitates the emergence of 

nascent LDs [28]. Recently, there has been a report on the 
phosphatase activity of FIT2, suggesting its involvement 
in maintaining the balance of phospholipids between the 
cytosol and the luminal side of the ER membrane [29].

The Perilipin family members (PLIN1 to PLIN5) are 
additional representative proteins found on the surface of 
LD categorized as a type II protein, which are considered 
to be a crucial regulator of LDs [30]. They play a role in 
the generation, transportation, and circulation of LDs, 
can shield LDs from lipase-induced dissolution, and con-
tribute to the movement and intercellular signal commu-
nication of LDs [31–33].

Each perilipin demonstrates a distinct expression pat-
tern and serves various essential functions: Perilipin 1 
(PLIN1) is predominantly expressed in adipocytes and 
macrophages. PLIN1 can inhibit the activation of Adi-
pose triglyceride lipase (ATGL), thus preventing the 
hydrolysis of triglycerides, and it plays a crucial role in 
the biogenesis, stabilization, and maturation of LDs in 
adipocytes [34]. Meanwhile, PLIN1 predominates and 
envelops large LDs in macrophages, resulting in the 
downregulation of lipid efflux proteins ATP-binding cas-
sette transporter A Member 1 (ABCA1) and ATP Bind-
ing Cassette Subfamily G Member 1 (ABCG1), a critical 
process for constraining the development of macrophage 
inflammatory phenotype and providing protection 
against atherosclerotic lesions [35].

Perilipin 2 (PLIN2) and Perilipin 3 (PLIN3) exhibit 
widespread expression in non-adipose tissues [3]. Due to 
its consistent association with the surface of LDs, PLIN2 
accumulation hinders the mobilization of fatty acids for 
fat breakdown and lipid digestion, thereby safeguarding 
LDs from degradation. As a result, it is regarded as an 
indicator of LDs content [36–38]. Accumulation of LDs 
decorated with PLIN2 occurs during the aging process of 
the brain. This occurrence may function as an early indi-
cation and initial stage of inflammation, early tauopathy, 
or neurodegenerative conditions such as Alzheimer’s 
disease (AD) [32]. Additionally, PLIN2 has been shown 
to enhance microglial activation in mice and promote 
inflammatory responses, as well as nucleotide-binding 
oligomerization domainlike receptor pyrin domain con-
taining 3 (NLRP3) inflammasome activation, contrib-
uting to the pathological process of Oxygen–glucose 
deprivation/Reperfusion (OGD/R) injury [39].

Perilipin (PLIN3) is the most widely expressed endoge-
nous protein involved in the initial stage of LDs synthesis 
and serves as a marker for newly formed LDs. This pro-
tein is localized in the cytoplasm and promptly accumu-
lates in the newly formed LDs following TAG nucleation, 
safeguarding TAG aggregates from lipolysis. Deficiency 
of PLIN3 results in reduced cellular TAG content [40–
43]. The Y232 site of PLIN2 and the Y251 site of PLIN3 
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can undergo phosphorylation by Choline kinase alpha 
2 (CHKa2). Phosphorylated PLIN2/3 dissociate from 
LDs and undergo degradation via autophagy facilitated 
by 70 kDa heat shock cognate protein (HSC70), thereby 
facilitating lipid degradation, fatty acid oxidation, and 
proliferation of the brain tumor [44].

Perilipin 4 (PLIN4) has the capability to interact with 
the LD membrane and establish a protective barrier, 
thus safeguarding the LDs from degradation by lipolytic 
enzymes. This contributes significantly to maintaining 
the stability of LDs within the cell [45]. Neurons depend 
on PLIN4 to facilitate the utilization of LDs by mito-
chondria for β-oxidation during periods of inflammation 
and oxidative stress [46, 47]. Studies have demonstrated 
that PLIN4 is upregulated in the brains of toxin-induced 
Parkinson’s disease models, leading to the promotion 
of LD formation. Additionally, it has been found that a 
dysfunctional PLIN4/LD/mitochondrial autophagy axis 
is implicated in the pathological progression of Parkin-
son’s disease, suggesting that PLIN4-LD could potentially 
serve as both a biomarker and therapeutic target for the 
condition [47]. In a distinct investigation, the researchers 
uncovered that SH2B1, operating as an adapter protein, 
enhanced the interaction between HSC70 and PLIN4, 
thereby promoting PLIN4’s degradation. This mechanism 
effectively alleviated LD accumulation and oxidative 
stress in neurons, providing defense against methyl-
4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced 
parkinsonian neurodegenerative disease [48]. Further-
more, PLIN4 represents a crucial target for the probiotic 
cell extract therapy of Alzheimer’s disease [49].

Perilipin 5 (PLIN5) functions as a scaffold for lipases, 
including ATGL and hormone-sensitive lipase (HSL), 
thereby stabilizing LDs by inhibiting the interaction 
of these lipases and suppressing LD hydrolysis. Simul-
taneously, it reduces the levels of saturated palmitic 
acid that can be detrimental to mitochondria. When 
energy demand increases, PLIN5 promotes LD lipolysis 
through its interaction with lipase enzymes, leading to 
the production of fat acids (FAs) that are subsequently 
utilized for mitochondrial β-oxidation [50–52]. Addi-
tionally, PLIN5 possesses a unique structure comprising 
an N-terminal domain homologous to other Perilipin 
proteins and a distinctive C-terminal region that facili-
tates recruitment of mitochondria onto the surface of 
LDs [53–55]. PLIN5 extends beyond its involvement 
in LD formation and stability, encompassing various 
pathological processes. Notably, the absence of PLIN5 
can induce insulin resistance in muscle cells, provoke 
heightened ER stress and inflammatory response in the 
liver, contribute to cardiac dysfunction and impact the 
progression of conditions such as ischemia–reperfusion 
injury, atherosclerosis [53, 56–60]. For instance, PLIN5 

exerts a protective effect on neuronal OGD/R injury by 
modulating the nuclear factor erythroid 2-related fac-
tor 2 (Nrf2)- protein kinase B (Akt)- Glycogen synthase 
kinase 3 β (GSK-3β) pathway, decreasing oxidative 
stress levels such as reactive oxygen species (ROS) and 
malondialdehyde (MDA), and attenuating the release 
of pro-inflammatory mediators such as nuclear factor 
kappa-B (NF-κB) activation. Consequently, the upregu-
lation of PLIN5 represents a survival strategy for neu-
rons under ischemic injury [61].

The biosynthesis of LDs
The formation of LDs can be delineated as a sequential 
four-stage progression, encompassing nucleation, expan-
sion, budding, and detachment [7].

The contact sites between LDs and ERs in glial cells 
may play an essential role in the biogenesis of nascent 
LDs [62, 63]. In glial cells, free fat acids (FFAs) are synthe-
sized de novo within the lipid bilayers of the ER to form 
LDs. The final step of neutral lipid TAG synthesis is cata-
lyzed by Diacylglycerol O-Acyltransferase 1 (DGAT1) 
and DGAT2 enzymes, while neutral lipid CEs are synthe-
sized by acyl-CoA cholesterol acyltransferases (ACAT1 
and ACAT2) [13, 33, 55]. When the concentration of 
neutral lipids exceeds their critical level, phase separa-
tion occurs, leading to the formation of lens-shaped 
structures (with a diameter of 20–60  µm) between the 
ER bilayers [64]. Due to the distinct composition of the 
dual-membrane cavity surface of the ER compared to the 
cytoplasmic face, it is possible that asymmetry in mon-
olayer tension plays a role in regulating the direction of 
LD budding [65]. The reduction of cytoplasm surface 
tension leads to an increase in the contact angle between 
developing LDs and the ER, thereby promoting the bud-
ding of LDs [66]. After the process of germination, LDs 
have the capacity to engage in interactions with other cel-
lular organelles, thereby supplying nearby TAGs and fatty 
acids. Additionally, they may increase in size by merging 
with other LDs or through lipid synthesis [14].

Degradation of LDs
Similar to other cellular organelles, LDs undergo a bio-
genesis and degradation cycle, contributing to the main-
tenance of LD stability [7].

When necessary, FAs are primarily mobilized from LDs 
through two distinct mechanisms: lipolysis or lipophagy. 
The process of lipolysis involves the breakdown of neutral 
lipids in LDs by lipase and certain cofactors [67]. Further-
more, LDs can be engulfed by autophagosomes and then 
transported to lysosomes, where they undergo hydrolysis 
into FFAs. This process, known as ‘‘lipophagy’’ [68, 69].
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Lipolysis
The regulation of lipolysis involves the interaction 
between PLINs and lipases, wherein PLINs assume dif-
ferent roles depending on their state [70, 71]. They can 
either recruit and activate lipases or act as a formidable 
barrier to prevent lipases from accessing LDs and reduce 
interactions with lipase coactivators [67, 71–73]. There 
are three primary enzymes responsible for catalyzing 
lipolysis [73, 74]: (1) ATGL catalyzes the initial step of 
lipolysis, and its activity is regulated by coactivator com-
parative gene identification-58 (CGI-58) and repressor 
protein G0S2 to fully exert hydrolase activity, thereby 
converting TAGs into DAGs and FFAs [73, 75, 76]. Pata-
tin-like phospholipase domain containing 2 (Pnpla2) 
encodes the gene responsible for ATGL. The expres-
sion of ATGL is stimulated by various factors, including 
proliferator-activated receptor (PPAR) agonists, mam-
malian target of rapamycin complex 1 (mTORC1) inhibi-
tion, and forkhead box O 1 (FOXO1) activation [77–79]. 
Interestingly, the correlation between ATGL activity and 
mRNA expression levels is not always positive, which 
may be attributed to post-translational modifications. 
Furthermore, it should be noted that ATGL modifica-
tion occurs independently of protein kinase A (PKA)
[73, 80]. (2) PKA-responsive lipase E/hormone-sensitive 
lipase (LIPE/HSL) contains multiple crucial phosphoryl-
ation sites that can be targeted by various kinases, par-
ticularly PKA, thereby leading to an augmentation of its 
enzymatic activity [77, 81]. Furthermore, β-adrenergic 
stimulation could induce HSL enzyme activity, whereas 
insulin exerts inhibitory effects on both HSL expres-
sion and phosphorylation [82, 83]. Subsequently, phos-
phorylated HSL translocate to LDs, which subsequently 
facilitate the hydrolysis of DAGs into monoacylglycerol 
(MAG) and FFAs. (3) Monoglyceride lipase (MGLL/
MGL) catalyzes the final step of lipolysis, and transfers 
MAG into glycerol and FA. The coordinated activity of 
these three enzymes in the fatty acid pathway results in 
the production of glycerol and FAs [73, 84].

Lipophagy
In the process of lipid autophagy, double membrane 
autophagosomes engulf either entire or partial LDs, 
transport them to lysosomes, and merge with lysosomes 
containing acid hydrolase enzymes. These enzymes 
degrade LDs into FFAs, providing energy for the organ-
ism and maintaining lipid homeostasis within the cell 
[69].

Chaperone‑mediated autophagy
HSPA8/HSC70 is a homologue of the HSP70 family 
that is constitutively expressed and serves as an intrigu-
ing partner protein. HSP70 fulfills a conserved role in 

various cellular functions by collaborating with its co-
chaperones, including clathrin-mediated endocytosis, 
protein folding, and regulation of chaperone-mediated 
autophagy (CMA) [85, 86].

Moreover, PLIN2 and PLIN3, along with the recently 
identified PLIN5, serve as substrates for lysosomal deg-
radation through the CMA pathway [37, 87]. The CMA 
process involves the recognition of a five-peptide motif 
(KFERQ or related sequences) within proteins, lead-
ing to the formation of a specific protein subpopulation 
that is targeted for degradation in the lysosome. During 
this process, the HSC70 identifies, binds to, and trans-
ports the protein to the inner membrane of lysosome-
associated membrane protein 2A (LAMP-2A), forming a 
multimeric complex that facilitates transport of unfolded 
proteins containing the KFERQ motif into the lysoso-
mal lumen for degradation [86]. Five peptides associated 
with CMA have been identified in PLIN-2 (LDRLQ) and 
PLIN-3 (SLKVQ), which undergo degradation via CMA 
prior to ATGL-dependent lipolysis and lipophagy. Hence, 
CMA plays a pivotal role in LD degradation [37, 87].

Macrolipophagy
Autophagy-mediated lipolysis, also referred to as macro-
autophagy of LDs, represents one of the cellular degrada-
tion pathways for LDs [68, 69, 73, 88]. Autophagosomes 
are vesicles with a double membrane that have the abil-
ity to encapsulate and transport LDs to the lysosome for 
degradation.

LDs contribute to autophagosome formation by sup-
plying lipids via enzymes such as PNPLA5 [89]. The 
autophagy related (ATG) 8 family proteins microtubule-
associated protein 1 light chain 3 (MAP1LC3/LC3) or 
GABARAPs serve as the primary ligands on phagosomes, 
binding to cargo receptors containing LC3-interacting 
region (LIR) motifs, however, they do not play a role in 
LD localization [90]. ATG3 facilitates the binding of 
ATG8 (LC3) to PE on the autophagosome membrane, 
which is a crucial step in autophagosome formation. 
Additionally, the ATG3 protein is also capable of facilitat-
ing the binding and esterification of LC3 with LDs, where 
esterified LC3B recruits autophagosomes through inter-
action with LC3 on these structures. Autophagosomes 
expand and engulf complete or partial LDs, which subse-
quently fuse with lysosomes for degradation into FFAs by 
acid lipases within lysosomes [91–93].

The recruitment of LDs by lysosomes is also under 
the regulation of RAB7 [94]. Rab7 is a small guanosine 
triphosphatase (GTPase) that orchestrates intracel-
lular membrane transport processes and is one of the 
numerous RAB proteins located on the LD surface. 
Additionally, it serves as a crucial component of vari-
ous, degradative compartments, including lysosomes 
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and multivesicular bodies, playing an essential role in 
the transport and maturation within the late endocytic 
pathway [95–98]. As a significant regulator of lipid 
autophagy, Rab7 becomes activated in diverse deg-
radative organelles under nutrient stress conditions, 
facilitating the transport of multivesicular bodies and 
lysosomes to the LD surface through microtubule-
mediated regulation, thereby enhancing the degrada-
tive metabolism of LDs [94, 99].

Lipolysis and lipophagy may operate as synchronized 
processes working in conjunction [100]. Interestingly, 
the role of lipophagy may necessitate the presence of 
LDs that meet specific size requirements. Smaller LDs 
can be directly engulfed, while larger LDs exceed the 
encapsulation capacity of phagocytic vesicles. The 
reduction in LD size through ATGL-mediated lipoly-
sis is essential. Simultaneously, newly synthesized 
FFAs are incorporated into small LDs via the ER and 
subsequently degraded through lipophagy [101]. This 
phenomenon may be attributed to increased sur-
face tension and membrane curvature induced by the 
monolayer structure of LDs [102, 103]. The size of 
LDs targeted by lipidophagy typically falls within the 
micrometer range or smaller [90].

The three mechanisms of LD degradation are illus-
trated in Fig. 1.

Interaction between LDs and mitochondria
In addition to lysosomes, LDs can also closely interact 
with various organelles such as mitochondria and per-
oxisomes [104]. In fact, LDs have interactions with nearly 
all organelles, and the directional migration of LDs may 
depend on the necessity of transporting them to differ-
ent organelles [105]. Mitochondria, which are crucial for 
the hydrolytic and oxidative degradation of FAs, play a 
key role as the primary source of intracellular ATP pro-
duction [106]. Mitochondrial dysfunction can result in 
intracellular lipid accumulation, leading to lipid toxicity, 
lipid peroxidation, and a series of pathological processes 
that ultimately cause further mitochondrial fragmenta-
tion, dysfunction, and even cell death [47, 48]. However, 
LDs can serve as a buffering mechanism to sequester 
excess lipids in order to prevent mitochondrial damage 
[107, 108]. On the other hand, as cellular reserve energy 
sources LDs transport FAs released from degradation 
to mitochondria for β-oxidation and ATP production 
through their interaction during nutrient stress [109]. 
This process requires colocalization along microtubules 
followed by directional proximity facilitated by molecular 
motors between LDs and mitochondria [110–112]. The 
docking proteins (mainly Perilipins, such as PLIN4 and 
PLIN5) promote adhesion and interaction between LDs 
and mitochondria [47, 55, 105, 110, 113]. Mitochondria 
closely associated with LDs are referred to as peridroplet 

Fig. 1  Three Mechanisms of Lipid Droplet Degradation. A. Lipolysis: Triglycerides within lipid droplets are hydrolyzed into glycerol and free 
fatty acids through the action of three cytosolic lipases: adipose triglyceride lipase ATGL/HSL/MGL. B. Chaperone-mediated autophagy: HSC70 
identifies a specific sequence in perilipin located on the surface of lipid droplets and facilitates its translocation to lysosomes for degradation. 
C. Macrolipophagy: LC3, functioning as a structural protein of the autophagosome, is conjugated to phosphatidylethanolamine (PE) to form 
the membrane-bound form LC3-II. The autophagosomes subsequently expand and engulf lipid droplets, which are then transported 
to lysosomes for degradation. ATGL adipose triglyceride lipase, HSL: hormone-sensitive lipase, MGL monoglyceride lipase, PLIN2 perilipin 2, LAMP2A 
lysosome-associated membrane protein 2A, HSC70 heat shock cognate protein, LC3 microtubule-associated protein 1 light chain 3
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mitochondria (PDM) [106]. The significance of PDM lies 
in establishing a direct FAs transport channel from reser-
voir LDs to β-oxidation site mitochondria which not only 
rapidly provides sufficient energy for cells but also limits 
lipotoxicity caused by excessive release of FFAs from LDs 
[114].

A potential association between LDs and mitophagy 
has been proposed. Ionizing radiation induces the accu-
mulation of LDs in close proximity to mitochondria and 
facilitates the targeted transportation of FAs to mito-
chondria. However, due to mitophagy, lysosomes engulf 
mitochondria that interact with LDs and release FFAs 
into the cytoplasm. However, FFAs within cytoplasm 
are susceptible to peroxidation, ultimately leading to 
ferroptosis. Inhibition of mitochondrial engulfment sig-
nificantly decreases the accumulation of LDs around 
mitochondria and reduces the level of FFAs under radi-
ation-induced stress. Interestingly, when mitophagy is 
inhibited, DGAT1 remains highly expressed following 
exposure to ionizing radiation and may specifically trans-
port FAs released from lysosomes, resulting in a substan-
tial increase in nascent LDs [115].

Certain molecules or pathways with dual roles in lipid 
metabolism and mitochondrial activity are pivotal in 
establishing the link between LDs and mitochondria.

Under nutrients restriction, both Sirtuins (sirt) and 
5’-prime-AMP-activated protein kinase (AMPK) are acti-
vated, thereby triggering the activation of Peroxisome 
Proliferator-Activated Receptor Gamma, Coactivator 1 
Alpha (PGC-1α) through deacetylation or phosphoryla-
tion mechanisms, respectively [116–121]. Consequently, 
this leads to an upregulation in the expression of mole-
cules related to mitochondrial oxidative phosphorylation 
(OxPhos) via the downstream Nuclear Respiratory Fac-
tor-1/2 (NRF1/2)—Transcription Factor A, Mitochon-
drial (TFAM) pathway [117–120, 122–125]. The loss of 
TFAM in astrocytes results in impaired mitochondrial 
OxPhos function, leading to enhanced fat accumulation, 
reduced FAs degradation, and increased production of 
ROS [104, 126]. In addition, the regulation of mitophagy 
by AMPK is mediated through various metabolic path-
ways in response to intracellular energy fluctuations 
[127–129].

As a microglia-specific subtype of hexokinase (HK), 
HK2 plays a dual regulatory role in energy metabolism 
and mitochondrial function [130]. On one hand, as 
the rate-limiting enzyme of glycolysis, HK2 promotes 
energy production to maintain microglial movement, 
proliferation, and effector functions. On the other 
hand, HK2 binds to voltage-dependent anion chan-
nels (VDACs) on the outer mitochondrial membrane 
(OMM) to regulate normal membrane potential and 
permeability while preventing cytochrome C release 

from mitochondria that would neutralize continuous 
ROS generation within them [131–133]. Inhibiting HK2 
increases lipid metabolism levels while suppressing gly-
colysis leading to increased mitochondrial ROS levels 
and accumulation of toxic intermediates that enhance 
phagocytic function and inflammation levels in micro-
glia [130, 134, 135]. Developing drugs that specifically 
target kinase activity or the interaction between HK2 
and OMM may help selectively modulate HK2 func-
tion in microglia cells and potentially have therapeutic 
implications in disease [130].

The cell types that contain LDs in CNS
LDs have been identified in various types of brain 
cells, including neurons, astrocytes, oligodendrocytes 
(OLs), microglia, and ependymal cells [136]. LDs can 
be formed under a variety of environmental and cel-
lular conditions, such as heightened extracellular lipid 
concentration, inflammatory events, increased levels of 
ROS, and alterations in intracellular metabolism [109, 
137]. Nevertheless, under physiological conditions, the 
presence of LDs in the brain is minimal [138]. It is note-
worthy that ependymal cells represent the exclusive cell 
type in the brain capable of generating substantial LDs 
under non-pathological conditions, even though their 
quantities are lower in young organisms and escalate 
with age [139, 140].

Neuron
Apart from cultured neurons found in certain areas like 
the hippocampus [141], dorsal root ganglion [142], stria-
tum [143], hypothalamus [144], neurons in vivo typically 
do not gather LDs [142, 145, 146]. The reason is that due 
to the active oxidative glucose/lactic acid metabolism 
of neurons during intense activity, neurons accumulate 
ROS, which may result in ROS-mediated lipid peroxida-
tion of the membrane [141, 147]. Nonetheless, neurons 
display a restricted antioxidant defense system, and their 
mitochondria show a diminished capacity for metaboliz-
ing FFAs [141]. The β-oxidation of FFAs, in comparison 
to glucose metabolism, results in a higher quantity of 
superoxide, which acts as a precursor for most other ROS 
[145]. This renders neurons particularly susceptible to 
periods of heightened activity, and neuron death could be 
induced via apoptosis and neurodegeneration unless neu-
rons eliminate the oxidized FAs by transferring them to 
glial cells [141, 148]. Furthermore, the neuronal biologi-
cal membrane can undergo degradation via autophagy 
and be transformed into FAs, which are then stored as 
neutral lipids in LDs or lipoprotein particles before being 
transferred to astrocytes [141].
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Astrocyte
Astrocytes, as the most prevalent cell type in CNS, play a 
crucial role in the regulation of numerous essential brain 
functions [149, 150].

Astrocyte processes surround blood vessels and neu-
ronal synapses, allowing them to take up FFAs from the 
bloodstream and extracellular space [151, 152]. FFAs can 
diffuse into astrocytes and can also be transported across 
the plasma membrane by fatty acid transporters (FATP) 
from the solute carrier protein (SLC27) family, such as 
FATP1 and FATP4 [9]. Additionally, fatty acid binding 
proteins (FABP), including FABP7, play a role in their 
uptake [153, 154]. Subsequently, these FFAs are stored 
within the cells as LDs [155, 156]. Research has indicated 
that primary astrocytes and astrocytes derived from rat 
brain tissue can uptake and store excessive exogenous 
FFAs, such as oleic acid, in LDs [[156, 157]].

Additionally, they function as a pivotal regulator of 
energy metabolism and provide direct metabolic and 
antioxidant support to neurons within the central nerv-
ous system [158, 159]. Neuronal oxidative stress can 
induce adjacent astrocytes to form LDs through media-
tors such as apolipoproteins. Astrocytes increase the 
breakdown of LDs by responding to neuronal activity 
and transferring the released FAs into mitochondria as 
a source of fuel for oxidative phosphorylation to con-
sume FFAs [141, 160]. Furthermore, in contrast to neu-
rons, astrocytes are equipped with a plentiful reservoir 
of antioxidants, enabling them to effectively mitigate the 
oxidative stress induced by the β-oxidation of FAs [141, 
161–163]..

Astrocytes remain the predominant cellular population 
that facilitates β-oxidation of FFAs, despite their primary 
reliance on glycolysis for energy production [94, 164, 
165]. Mitochondria within astrocytes play a pivotal role 
in fatty acid metabolism and exhibit heightened sensitiv-
ity to FAs load [104].

Microglia
Microglia serve as the primary immune cells and play a 
crucial role in safeguarding brain function [130]. Under 
physiological conditions, resting microglia in CNS 
exhibit a highly branched morphology and continuously 
monitor danger signals to maintain brain homeostasis 
[166]. When exposed to pathological conditions, acti-
vated microglia undergo dynamic processes that result in 
the formation of different response phenotypes based on 
various signal stimulations [167–169]. These changes are 
accompanied by alterations in morphology, gene expres-
sion, and function, enabling microglia to participate in a 
diverse range of cell signaling cascades that contribute to 
either protective or injurious roles [170].

When activated, they alter their transcriptional profile, 
assume new functions, and may accumulate LDs [171–
173]. Activation of inflammation and the phagocytosis of 
cell/myelin fragments can both contribute to the genera-
tion of LDs in microglia [174]. Lipoprotein particles and 
lipid particles originating from neurons also play a sig-
nificant role in the generation of LDs in microglia [141, 
175].

During the process of aging, age-related inflammatory 
factors may result in the progressive activation and dys-
function of microglia. This represents a novel detrimental 
state of microglia characterized by impaired phagocyto-
sis, neuroinflammation, elevated levels of ROS, as well as 
alterations in lipid metabolism, referred to as ‘lipid drop-
let-accumulating microglia’ (LDAM) [172, 176, 177]. This 
specific subset of activated microglia is also observed in 
neurodegenerative models and has been proposed as a 
potential biomarker for early-stage neurodegeneration 
[162]. Furthermore, it involves certain specific genetic 
modifiers and is believed to be associated with inherited 
forms of neurodegenerative diseases [162].

Oligodendrocyte
Oligodendrocyte can produce myelin—a multilayered 
membrane rich in lipids, particularly cholesterol—that 
wraps around the axon to facilitate rapid neural signal 
transmission [178]. OLs are able to utilize both endog-
enously synthesized cholesterol and exogenously syn-
thesized cholesterol from neighboring cell types for the 
production of myelin [179]. Immature OLs could syn-
thesize LDs within ER. However, with the assistance of 
Sigma-1 receptor (Sig-1R), ER-synthesized galactosyl-
ceramides (GalCer) and cholesterol are transported to 
the myelin membrane for completing OLs differentiation 
and integrating LDs into the myelin sheath [180]. In the 
context of aging or neurodegenerative conditions, degra-
dation of myelin results in the temporary storage of fatty 
acids from myelin in LDs within oligodendrocytes. Sub-
sequently, these fatty acids are transferred to astrocytes, 
where they undergo β-oxidation to produce ketone bod-
ies as an alternative energy source for neurons [181].

Ependymal cell
Unlike other types of glial cells, ependymal cells possess 
the ability to uptake lipid particles in cerebrospinal fluid 
via CD36 and Low Density Lipoprotein Receptor-Related 
Protein (LRP), thereby accumulating LDs under normal 
physiological conditions. [182–184]. However, the pres-
ence of LDs within ependymal cells can also be aug-
mented during aging, obesity and Alzheimer’s disease. 
[139, 140, 185–187]. The involvement of LDs in the func-
tioning of ependymal cells requires further investigation 
in the future.
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The Role of LDs in Neuroinflammation
Inflammation plays a crucial role in the formation of LDs
Lipopolysaccharide (LPS) can activate the TLR4, a pat-
tern recognition receptor on the surface of microglia. 
This activation subsequently triggers the downstream 
signaling cascade involving TGFβ-activated kinase 
1 (TAK1), mitogen-activated protein kinase kinases 
(MKKs), and phosphorylated p38 mitogen-activated 
protein kinases (p38 MAPKs), culminating in the activa-
tion of the transcription factor activator protein-1 (AP-
1). Additionally, LPS promotes the expression of PLIN2, 
a crucial surface protein that safeguards neutral lipids 
within LDs from lipolysis, thereby playing a significant 
role in the increased number and size of LDs. Further-
more, LPS can upregulate PLIN2 expression via the 
phosphatidylinositol 3-kinase (PI3K)/protein kinase B 
(Akt) pathway [173].

The components of LDs play a role in the process 
of neuroinflammation
LDs can engage in various inflammatory signaling path-
ways by transforming their constituent lipids into active 
lipid mediators. This process primarily consists of three 
stages: the presence of precursors for active lipid media-
tors, the enzymatic conversion of these precursors into 
active lipid mediators, and the interaction of active lipid 
mediators with receptors on target cells [188]. Fatty acids, 
which are esterified and stored within LDs, can be cat-
egorized into three primary types: saturated fatty acids 
(SFAs), monounsaturated fatty acids (MUFAs), and poly-
unsaturated fatty acids (PUFAs). Notably, PUFAs serve 
as precursors for the biosynthesis of two major classes of 
bioactive mediators: pro-inflammatory eicosanoids, pri-
marily derived from ω-6 PUFAs (with the exception of 
prostaglandin E2 and lipoxins, which exhibit anti-inflam-
matory properties), and specialized pro-resolving media-
tors (SPMs), predominantly originating from ω-3 PUFAs 
[189].

The precursors of these active mediators are distrib-
uted in two distinct reservoirs of biological activity: the 
phospholipid pool and the triglyceride pool. These pools 
correspond to the monolayer phospholipid shell in the 
fundamental structure of the LD and the neutral lipid 
in its core, respectively [190–192]. The former process 
necessitates the action of phospholipase A2, typically 
calcium-dependent cytosolic phospholipase A2 alpha 
(cPLA2α), at the sn-2 position of glycerophospholip-
ids, resulting in the production of lysophospholipids 
and polyunsaturated fatty acids, including arachidonic 
acid, eicosapentaenoic acid (EPA), and docosahexae-
noic acid (DHA) [193, 194]. TAG in ATGL and HSL 
can undergo the lipolysis pathway to generate the cor-
responding PUFAs [195, 196]. Cyclooxygenases (COX), 

Lipoxygenases (LOX), and Cytochrome P450 (CYP) 
epoxygenases generate both pro-inflammatory eicosa-
noids and SPMs with anti-inflammatory properties [189]. 
These lipid mediators can function as ligands for PPARs, 
G protein-coupled receptors (GPCRs), and TLRs, elicit-
ing inflammatory and immune responses in target cells 
through autocrine or paracrine signaling mechanisms 
[189, 197].

In the study conducted by Armen Khatchadourian and 
colleagues, the co-localization of cPLA2α with induced 
LDs was observed in microglia activated by LPS [173]. 
In the research conducted by Huiya Li et al., it has been 
demonstrated that inhibiting ATGL activity can decrease 
the secretion of proinflammatory cytokines from micro-
glia in the OGD/R model, thereby enhancing neurologi-
cal function in a cerebral ischemia–reperfusion in  vivo 
model [174]. The study by Josephine Louise Robb et  al. 
also elucidates the role of ATGL in mediating the break-
down of TAG within LDs, thereby contributing to acute 
neuroinflammation [198].

The ratio of ω-6 to ω-3 PUFAs might influence the 
equilibrium of downstream proinflammatory and anti-
inflammatory lipid mediators, potentially impacting the 
overall inflammatory status [199, 200]. Aging can result 
in chronic modifications to brain lipid metabolism, 
including a reduction in ω-3 PUFA levels, which may 
be linked to chronic neuroinflammation associated with 
the aging process [201]. We hypothesize that the reduc-
tion in ω-3 PUFA levels may also manifest in alterations 
to the lipid composition of LDs in lipid-laden cells within 
the aging brain. The study conducted by Julia Marschal-
linger et  al. demonstrated minimal changes in the lipid 
composition of LDs in both young and aged microglia 
[172]. However, their study does not delve into the more 
detailed compositional changes within various lipid frac-
tions in LDs, such as alterations in the fatty acid species 
esterified with TAG. Future research should prioritize 
this area.

In addition to their role in the synthesis of eicosanoid 
acids and SPMs, other metabolites derived from these 
compounds are also implicated in inflammatory pro-
cesses. For instance, when FA overload occurs in astro-
cytes, it not only induces the formation of LDs but also 
results in an excess of acetyl-CoA, an intermediate prod-
uct of FA metabolism. This surplus of acetyl-CoA sur-
passes the OxPhos capacity of mitochondria, leading to 
its detachment from the mitochondria and subsequent 
acetylation of signal transducer and activator of tran-
scription 3 (STAT3). Consequently, this process medi-
ates the formation of reactive astrocytes and promotes 
the release of pro-inflammatory cytokines, which in turn 
activate microglia [104]. Comparable outcomes were 
observed in the study conducted by Yoon-Hee Kwon 
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et  al. [202]. Another instance, in aged microglia, which 
exhibit reduced efficiency in clearing myelin debris, 
cholesterol accumulation within lysosomes results in 
impaired lysosomal function and the activation of inflam-
masomes [203].

In addition to the lipid component of LDs, the protein 
component has also been associated with neuroinflam-
mation in multiple studies. The findings by Xu-Ying Liu 
et  al. demonstrated that PLIN2 can be upregulated in 
both in  vitro and in  vivo models of cerebral ischemia–
reperfusion injury, thereby exacerbating the inflamma-
tory response and activating the NLRP3 inflammasome 
[39]. The up-regulation of PLIN2 and pro-inflammatory 
factors in human brain tissues has been associated with 
aging and neurodegenerative diseases [32]. Neverthe-
less, these findings do not entirely preclude the poten-
tial impact of lipid components of LDs on inflammatory 
processes. In the study conducted by Melanie Loix et al., 
it was found that PLIN2 expression was upregulated 
by macrophages in a demyelinating disease model of 
the CNS via the uptake of myelin and activation of the 
PPARγ pathway. The knockout of PLIN2 not only facili-
tated the enzymatic lipolysis of LDs in foam macrophages 
but also mitigated the inflammatory phenotype of these 
cells [204]. This finding contrasts with the previously 
mentioned results, which indicate that the ATGL/HSL 
pathway can generate proinflammatory mediators. We 
hypothesize that the variation in lipid ligands across dis-
tinct disease models may contribute to this phenomenon.

In the demyelination model, cholesterol-rich myelin 
serves as the primary lipid ligand responsible for the 
formation of phagocyte LDs. Consequently, it does not 
supply the active lipid mediator precursors that TAGs 
provide in the lipolytic pathway induced by PLIN2 knock-
out. Conversely, cholesteryl esters within LDs are likely to 
generate inflammatory lipid mediators predominantly via 
the lipophagy-lysosomal acid lipase (LAL) pathway [205]. 
Melanie Loix et al. further elucidated that the knockout 
of PLIN2 did not impact the lipophagy pathway. Nota-
bly, their research also demonstrated that the absence 
of PLIN2 led to a decrease in phospholipid components 
during LD degradation, suggesting that PLIN2 plays a 
role in maintaining the phospholipid abundance of LDs. 
This maintenance is crucial for providing precursors for 
cPLA2α to facilitate arachidonate production, an effect 
that was negated by the knockout of PLIN2.This may elu-
cidate that in the disease model of CNS demyelination, 
the upregulation of PLIN2 sustains the inflammatory 
phenotype of foam phagocytes, whereas PLIN2 knock-
down diminishes this inflammatory phenotype, thus 
facilitating remyelination following demyelination. How-
ever, in the study conducted by Huiya Li et al., cell debris 
generated through the repeated freeze–thaw cycles of 

HT22 cell lines in the OGD/R model inadequately repre-
sented the substantial quantity of myelin debris produced 
following ischemic injury. Furthermore, based on the 
quantitative polymerase chain reaction (qPCR) analysis 
of genes associated with cholesterol and triglyceride syn-
thesis/metabolism in the in  vivo model, the researchers 
concluded that TAG, rather than cholesterol, constitutes 
the primary neutral lipid component within LDs during 
cerebral ischemia–reperfusion injury [174]. This may 
elucidate that inhibiting ATGL activity in the cerebral 
ischemia–reperfusion injury model decreases the enzy-
matic hydrolysis of PUFA from TAG within LDs, conse-
quently diminishing the release of the pro-inflammatory 
lipid mediator eicanoic acid.

LDs in CNS under various pathological conditions
During the process of brain development and aging, or in 
pathological conditions such as exposure to detrimental 
agents, neurodegenerative diseases, and cancer, LDs fre-
quently emerge within the brain [206–210]. Impairment 
of fatty acid storage in LDs or dysregulation of lipid deg-
radation metabolism in LDs may precipitate the onset of 
disease [55, 197].

Cerebral ischemic stroke
Inflammatory mechanism
Cerebral ischemic stroke is a critical pathological condi-
tion characterized by inflammation and various cellular 
stress responses, including oxidative stress [61, 136]. The 
development of LDs in stroke conditions may arise from 
the synergistic action of various mechanisms [211].

Neuroinflammation serves as a crucial indicator of sec-
ondary cellular damage in ischemic stroke [212–214]. 
The altered post-stroke environment, characterized by 
ionic imbalance, disruption of crucial neuron-microglia 
interactions, diffuse depolarization, rapid and widespread 
acute cell death releasing danger signals and generating 
substantial tissue debris, as well as necrotic cells releasing 
their contents into the extracellular environment lead-
ing to a robust inflammatory response, induces morpho-
logical and phenotypic changes in microglia. This causes 
them to adopt proinflammatory properties and enhances 
their phagocytic activity against lipid-rich damaged tis-
sue debris such as myelin/cell debris [215, 216]. These 
changes may lead to the formation of massive LDs during 
stroke in response to the disorder caused by ischemia and 
efforts to restore lost homeostasis [217, 218].

Furthermore, inflammation triggers metabolic changes 
that promote glycolysis, pentose-phosphate pathway 
activation, and lipid biosynthesis. These modifications, 
in conjunction with lipid absorption, drive the formation 
of LDs, support synthesis metabolism, and facilitate the 
proliferation of microglia cells. Proliferating microglia 
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release trophic factors that contribute to the protec-
tion and repair [217]. Triggering Receptor Expressed 
On Myeloid Cells 2 (TREM2), a transmembrane protein 
responsible for lipid transport [219, 220], is thought to 
act as a lipid sensor in microglial cells and may link lipid 
metabolism with microglia-mediated inflammatory pro-
gression [172]. In the ischemic stroke model, TREM2 can 
attenuate inflammation, enhance cholesterol metabo-
lism, inhibit cholesterol conversion into cholesteryl ester 
through various signaling pathways, thereby inhibiting 
the formation of CEs-rich LDs [221].

Another potential mechanism involves the disruption 
of the blood–brain barrier due to inflammation following 
a stroke, which permits peripheral lipoprotein particles 
to penetrate the ischemic brain tissue. This process pro-
vides essential materials for the formation of LDs [222].

The timing of LD formation during the progression of 
stroke varies among different studies. In one study, evi-
dent LDs were observed in microglia 3 days after middle 
cerebral artery occlusion (MCAO) surgery [174], whereas 
Arbaizar-Rovirosa M et al. reported the presence of lipid-
laden microglia on the first day after MCAO [223]. Fur-
thermore, an additional study indicated elevated levels of 
LDs 7 days after stroke induction [211]. A time-depend-
ent investigation of LDs during the 72-h re-oxygenation 
period following OGD revealed that the initial rise in 
LD count was transient. Following a peak at 24 h of re-
oxygenation treatment, the number of LDs declined. It 
was suggested that this decline might be attributed to 
the sustained upregulation of the anti-inflammatory fac-
tor Transforming Growth Factor Beta 1 (TGF-β1), which 
exerts its effects in an autocrine manner [224].

This variation can be attributed to the disparity in the 
age of mice and the methodology employed for LD iden-
tification [174]. The majority of LD formation in cerebral 
ischemia occurs during the acute phase of the stroke. 
One potential explanation for this phenomenon is that, at 
this stage, microglia exhibit their highest level of phago-
cytic activity. Research indicates that on the first day after 
focal cerebral ischemia, microglia undergo a morpho-
logical transformation into an amoeboid shape, acquire 
phagocytic properties, and engulf neuron fragments. Fol-
lowing this, microglia continue to proliferate during the 
initial two weeks and exhibit their highest phagocytic 
activity in the two days after stroke [225]. Moreover, Li 
et al. revealed stable levels of LDs at day 14 but a marked 
reduction by day 30 post-stroke. Therefore, they postu-
lated that the LDs within microglia gradually diminished 
or were potentially transferred to neighboring cells dur-
ing the chronic phase of stroke [174].

LDs not only function as a passive lipid reservoir 
within microglia during stroke, but also serve as a cru-
cial hub for integrating inflammatory signaling and 

lipid metabolism due to the distinct roles played by dif-
ferent lipid mediators in the inflammatory response. 
Saturated FAs can activate Toll Like Receptor 2/4 
(TLR2/4), triggering an inflammatory response [226]. 
Hypoxia has been shown to result in the accumulation 
of saturated FAs, including toxic ceramides and acylcar-
nitines, as well as activation of the NF-κB transcription 
factor [227]. Depending on the type of PUFAs present, 
they can generate corresponding lipid derivatives with 
either anti-inflammatory or pro-inflammatory proper-
ties. These lipid mediators can act as ligands for PPARs, 
GPCRs, and TLR2/4 respectively, participating in 
inflammatory signaling pathways [189]. The derivatives 
derived from unsaturated long chain n-6 FAs gener-
ally exhibit pro-inflammatory effects; however, unsat-
urated long chain n-3 FAs inhibit TLR2/4 expression 
while activating PPARs to suppress NF-κB transcrip-
tion and dampen the inflammatory response [226]. As 
a dynamic buffer for these lipids and their derivatives, 
LDs have the ability to modulate signal transduction 
effects accordingly.

Several studies have demonstrated that LDs in certain 
peripheral blood cells play a crucial role as an inflamma-
tion regulator in various disease processes. As previously 
mentioned, ATGL and HSL are the two primary enzymes 
involved in the process of lipolysis. In the peripheral 
blood, deficiency of ATGL can result in impaired mac-
rophage phagocytosis, reduced migration and infiltration 
capacity, accompanied by the attenuation of inflamma-
tory mediators such as Prostaglandin E 2 (PGE2) and 
Interleukin 6 (IL-6), thereby exhibiting an anti-inflamma-
tory phenotype [228, 229]. Within mast cells, LD serves 
as the primary bioactive reservoir of endogenous arachi-
donate and provides an active site for enzymes involved 
in arachidonic acid oxidative metabolism. Meanwhile, 
ATGL facilitates the release of these inflammatory lipid 
mediators through lipolysis [230, 231]. Additionally, 
ATGL and its coactivators also participate in modulating 
inflammatory signaling by regulating the availability of 
these inflammatory lipid precursors within other leuko-
cytes [196].

The activation of HSL within adipocytes in response 
to isoproterenol can enhance lipolysis. Subsequently, 
the FAs produced by HSL stimulate the upregulation of 
COX2, a crucial pro-inflammatory molecule, through 
the activation of JNK/NF-κB pathway. This leads to the 
recruitment of monocytes/macrophages via monocyte 
chemoattractant protein-1  (MCP-1) and subsequent 
immune infiltration [232]. Activation of the sphingosine 
kinase 1 and JNK signaling pathways, which are depend-
ent on HSL, can also activate the β-adrenergic signaling 
pathway, resulting in upregulation of pro-inflammatory 
genes such as IL-6 [233].
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Within the confines of the central nervous system, the 
inhibition of ATGL leads to significant enhancements 
in neurological function in MCAO mice, indicating 
that LDs exert a neuroprotective effect during the acute 
phase of cerebral ischemia [174]. However, the findings 
of other studies, present a contrasting perspective. The 
research conducted by Lin et al. demonstrated that LDs 
significantly accumulated in microglia within the OGD 
model, accompanied by an elevation in the production 
of inflammatory cytokines. The suppression of LDs for-
mation markedly diminished both the infarct size and 
the motor function deficits in rats subjected to cerebral 
ischemia [234]. Similarly, the research conducted by Pan 
et al. demonstrated that the silencing of NEAT1 signifi-
cantly inhibited LD formation and enhanced neuronal 
viability, consequently mitigating ischemic brain injury in 
MCAO mice [211]. It remains to be elucidated whether 
LD is a causative factor of inflammation, a consequence 
thereof, or if both elements exert mutual influence on 
one another [224].

After an ischemic event, microglia in aged mice dem-
onstrate a higher presence of LDs compared to young 
mice. The re-proliferation of microglia leads to a reduc-
tion in the accumulation of LDs in newly generated 
microglia and contributes to the enhancement of motor 
function in aged mice following ischemic events [223]. 
It is evident that the cell division necessary for microglia 
regeneration utilizes LDs, potentially resulting in pro-
repair phenotypes linked to microglial proliferation [8]. 
Instead, the persistent accumulation of lipids by micro-
glial cells may lead to long-term functional dysregulation 
similar to that observed in foam cells [217].

The latest findings reveal a strong association between 
lipid peroxidation and ferroptosis, with lipid phagocyto-
sis playing a crucial role in providing substrates for lipid 
peroxidation during the process of ferroptosis. Addition-
ally, it initiates lipid release and subsequent lipid peroxi-
dation, ultimately worsening the condition of patients 
with cerebral ischemia [235,236].

Stress response mechanisms
In addition to inflammation, the accumulation of LDs 
is also linked to various stress stimuli [136]. Common 
stressors include metabolic stress (resulting from nutri-
ent deprivation, excessive exogenous FFAs or l-lactate), 
hypoxic stress, and the central nervous system’s stress 
response activated by norepinephrine through the activa-
tion of alpha-2- and beta-adrenergic receptors (α2-AR/
β-AR). These stressors are frequently encountered in 
various pathologies of the central nervous system, result-
ing in astrocytes accumulating LDs under these challeng-
ing conditions (Fig. 2) [156].

Starvation and hypoxia are the most immediate stress-
ors during ischemic stroke, which may act as stimuli for 
the accumulation of LDs in astrocytes to shield neurons 
from stress-induced lipid toxicity.

The cellular nutritional state exerts a paradoxical influ-
ence on LD formation. As the predominant glial cells 
in CNS, astrocytes function as metabolic sensors and 
exhibit rapid responses to exogenous nutrient levels, 
accumulating LDs in conditions of obesity or diabe-
tes characterized by elevated fatty acid concentrations 
[202, 237, 238]. Conversely, LDs can also develop in 
the absence of nutrients [109, 239, 240]. With the pro-
longed duration of starvation, starved cells can enhance 
autophagy activity to facilitate the degradation of cel-
lular membranes and the recycling of FAs into LDs, 
thereby increasing both the number and volume of LDs. 
This dynamic process has been validated by Angelika S. 
Rambold et  al. through the utilization of a fluorescent 
FA probe technique [109]. This mechanism effectively 
mitigates lipid toxicity induced by elevated FFAs while 
simultaneously priming substrates for subsequent mito-
chondrial metabolism [108, 109,157, 241, 242]. During 
periods of nutrient deprivation, astrocytes undergo a 
metabolic shift towards lipid metabolism to prioritize the 
remaining glucose for neurons, thereby enhancing neu-
ronal vitality [243]. During extended periods of glucose 
deprivation, the stored free FFAs in astrocyte LDs can 
undergo conversion into ketones. These ketones serve 
as an alternative energy source that can be transported 
to neurons, thereby enhancing neuronal vitality in the 
absence of glucose [244, 245].

In ischemic diseases, hypoxia occurs in addition to 
glucose deprivation [246], leading to anaerobic metabo-
lism and the accumulation of l-lactate through glycolysis. 
L-lactate is released from neurons and may build up in 
the extracellular space, which could induce LDs accumu-
lation within astrocytes [156, 247, 248]. After an eleva-
tion in l-lactate levels within the brain, the activation of 
l-lactate receptors found on the surfaces of astrocytes and 
neurons, such as the Gi protein-coupled l-lactate-sensi-
tive receptor GPR81, stimulates the accumulation of LDs. 
This activation results in a decrease in cAMP production, 
inhibition of cAMP-dependent lipolysis enzymes, and 
promotion of LDs accumulation [249–251]. L-lactate can 
also be transported into astrocytes via monocarboxylic 
acid transporters (MCTs) and lactate channels, where it 
can serve as a substrate for the re-synthesis of FFA [252]. 
This may induce the accumulation of LDs in astrocytes as 
a protective mechanism against the detrimental impact 
of excessive FFAs [9,141, 162, 163].

Under conditions of nutrient deprivation, astrocytes, 
which primarily metabolize lipids, exhibit an upregu-
lation in the production of ROS precursors [145]. In 
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Fig. 2  Lipid droplets formation in astrocytes during cerebral ischemia. Astrocytes could accumulate lipid droplets under various stress stimuli such 
as nutrient deprivation, hypoxia, elevated ROS and activation of adrenergic receptors. α2-AR alpha-2-adrenergic receptors, β-AR beta-adrenergic 
receptor, MCT monocarboxylic acid transporter, ROS reactive oxygen species. PLIN perilipin
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response to heightened ROS levels, astrocytes activate 
hypoxia-inducible factor 1/2 (HIF-1/2) pathways to facili-
tate the transfer of membrane PUFAs into LDs, thereby 
safeguarding them against peroxidation [163, 253].

The presence of norepinephrine stress is also observed 
in ischemia and reperfusion (I/R) [254, 255]. Nor-
epinephrine can regulate lipid metabolism in astro-
cytes during ischemic stroke through the activation of 
β-adrenergic and α2-adrenergic receptors [156]. Stimula-
tion of α2-AR inhibits cAMP-dependent lipolysis while 
promoting LD accumulation, whereas stimulation of 
β-AR enhances L-lactate production to promote LD for-
mation [156,256,257].

Alzheimer’s disease
In mouse models of Alzheimer’s disease, LD accumula-
tion precedes the development of the two primary hall-
marks of the disease, namely β-amyloid plaques and tau 
protein-based neurofibrillary tangles [187, 258].

Neuroglia can shield neurons from lipid toxicity by 
uptaking lipids generated by neurons and forming LDs, 
with Apolipoprotein E (ApoE) playing a crucial role in 
this process [9,10]. ROS at elevated levels can trigger 
neurons to generate LDs. Unlike astrocytes, neurons 
are unable to efficiently utilize FFA as a source of energy 
due to their inability to regulate the excessive ROS pro-
duction by mitochondria during the β-oxidation process 
[145, 160, 164]. The neuronal lipid transporters ABCA1 
and ABCA7 are essential for the assembly of neuronal 
lipids and their integration into ApoE/D particles origi-
nating from astrocytes [259]. Lipoprotein particles are 
internalized by astrocytes through endocytosis, leading 
to the release of FFAs and their incorporation into LDs, 
thereby mitigating the detrimental effects of FFAs [141]. 
The research results of Mi et al. in the AD mouse model 
indicate that the formation of astrocyte LD functions as 
a primary protective mechanism against brain lipid tox-
icity, rather than triggering reactive neuroinflammation 
[104].

APOE4 represents the most significant genetic pre-
disposing factor for AD [260]. The dysregulation of lipid 
homeostasis, characterized by an increase in lipid anab-
olism, was observed in ApoE4 microglia and astrocytes 
derived from induced pluripotent stem cells (iPSCs), 
potentially contributing to the accumulation of LDs in 
ApoE4 cells [209, 261]. Moreover, APOE4-induced LDs 
result in the impairment of microglial surveillance func-
tion within neuronal networks, thereby compromising 
their ability to monitor neuronal activity [209]. ApoE4 
microglia demonstrate compromised mitochondrial 
oxidative capacity to metabolize FAs and exhibit down-
regulation of genes involved in lipid catabolism, thereby 
further contributing to the accumulation of LDs and 

the development of pro-inflammatory microglia in AD 
[209,262–264]. ApoE4 neurons are capable of accumulat-
ing LDs, and the cholesterol contained within these LDs 
can elevate p-tau levels, a process that may be mitigated 
by inhibiting the cholesterol synthesis pathway [265, 
266]. Furthermore, ApoE4 neurons may impair astrocytic 
clearance of neuronal lipids [267].

Tau protein pathology represents a key feature of Alz-
heimer’s disease [258], with abnormal accumulation of 
LDs observed in the brains affected by tau protein disor-
ders. Unsaturated lipids originating from tauopathy iPSC 
neurons and transferred to microglia have the potential 
to cause LD accumulation, potentially by inhibition of 
neuronal AMPK signaling. AMPK possesses the capac-
ity to inhibit lipid synthesis in neurons and promote lipid 
phagocytosis, thus reducing lipid flow to microglia. Dele-
tion of AMPK from neurons in the early stages of Tau 
protein pathology can result in an increase in the expres-
sion of genes involved in LD synthesis, such as PLIN3 
and lipid phosphate phosphohydrolase (lpin1), leading to 
elevated LD content and exacerbation of pro-inflamma-
tory microglia proliferation, thereby promoting neuropa-
thology [2].

Lower levels of lipoprotein lipase (LPL) have been 
observed in the central nervous system of AD patients 
[268]. Research has shown that a lack of LPL in micro-
glia leads to an increase in LD accumulation [269]. 
Deficiency of LPL in microglia results in a polarization 
towards a pro-inflammatory state, characterized by com-
promised lipid uptake and reduced fatty acid oxidation 
(FAO), along with elevated cholesterol ester levels and 
diminished cholesterol efflux. Additionally, LPL-deficient 
microglia display pro-inflammatory lipidomic signatures 
[269, 270].

Neuroinflammation is recognized as a key biomarker 
of Alzheimer’s disease, typically linked to dysregula-
tions in cholesterol metabolism [271]. Neuroinflamma-
tion initiates the activation of microglia, which exhibit 
elevated levels of Cholesterol 25-Hydroxylase (Ch25h), 
an enzyme responsible for hydroxylating cholesterol to 
generate 25-hydroxycholesterol (25HC). 25HC is an oxi-
dized steroid that plays a crucial role in the regulation 
of cholesterol metabolism in mangy cell types within 
CNS including astrocytes [272]. In astrocytes exposed 
to 25HC, this compound enhances the activity of Sterol 
O-acyltransferase 1 (SOAT1) also referred to ACAT1, 
resulting in a twofold increase in cholesterol esters and 
an accumulation of LDs, effects that can be inhibited by 
SOAT/ACAT inhibitors [273].

Glioma
Due to the rapid proliferation, active metabolism, 
and strong invasiveness of malignant glioma, there is 
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an increased nutritional demand for tumor cells that 
necessitates metabolic changes which are character-
ized by heightened lipid uptake, synthesis, and storage 
in response to elevated glucose consumption [274–276]. 
Previous studies have indicated that compared to nor-
mal brain tissues, malignant gliomas exhibit higher levels 
of various lipid classes, particularly CE [275, 277, 278]. 
These distinct lipids not only serve as crucial energy 
reservoirs during tumor progression but also play a sig-
nificant role in oncogenic signal transduction [279, 280]. 
Consequently, they can potentially be utilized as markers 
for diagnosing and prognosticating high-grade glioma. 
Sterol regulatory element-binding proteins-1 (SREBP-
1) acts as a vital metabolic regulator of these differen-
tial lipids and is specifically upregulated in high-grade 
gliomas [281–283]. In response to increased cholesterol 
demand, the inactive complexes of SREBPs and SREBP 
cleavage-activating protein (SCAP) initially bound to 
the ER membrane dissociate from insulin-inducible gene 
protein (Insig), which is also located on the ER mem-
brane. Subsequently, they are transported to the Golgi 
apparatus for two proteolytic activations before trans-
forming into nuclear transcription factors that promote 
ER cholesterol synthesis. The process is effectively sum-
marized by Cheng et  al. [280]. However, this process is 
sensitive to elevated cholesterol concentrations within 
the ER; excess cholesterol can be esterified into CE by 
SOAT and stored within LDs [282,284].

As previously noted, LDs can mitigate ferroptosis by 
sequestering lipid substrates, while lipophagy plays a 
crucial role in the ferroptosis process [235, 236]. Fur-
thermore, study has demonstrated that ionizing radia-
tion—an essential modality for eradicating malignant 
tumors—induces the accumulation of LDs adjacent to 
damaged mitochondria and facilitates the transport of 
fatty acids to these organelles. During mitophagy, com-
promised mitochondria release FFAs into the cytoplasm, 
thereby supplying substrates for ferroptosis [115]. We 
propose that in malignant tumors utilizing LDs as sup-
plementary energy sources, enhancing either lipophagy 
or mitophagy may serve as viable strategies for inducing 
ferroptosis in tumor cells, representing a promising ave-
nue for therapeutic intervention.

Glioma-associated microglia/macrophages (GAMs) 
constitute a critical component of the glioma microen-
vironment [285, 286]. Glioma cells enriched with LDs 
facilitate the recruitment, infiltration, and functional 
alterations of GAMs via paracrine signaling [287]. By 
establishing a highly immunosuppressive microenviron-
ment and secreting factors that facilitate neovasculari-
zation, GAMs contribute to the progression and drug 
resistance of GBM, often correlating with poor patient 
prognosis [287, 288]. Targeting the lipid metabolism of 

gliomas can modulate the function of GAMs and revert 
the immunosuppressive microenvironment [289]. Addi-
tionally, the immune cells that regulate these tumor 
microenvironments can serve as potential therapeutic 
targets for GBM [290].

Aging
The accumulation of LDs is not only associated with 
pathological processes, but also with physiological pro-
cesses such as aging. LDs are primarily found in micro-
glia (LDAM) during aging, rather than other cell types 
[172].

A key factor contributing to the formation of LDAM 
is the decline in phagocytosis, which mainly manifests 
as impaired lysosomal function associated with aging. 
This leads to a weakened ability for macrolipophagy and 
CMA-mediated lipophagy to effectively degrade LDs 
within LDAM [291–295]. Aging can induce M1 polari-
zation of microglia and upregulate the expression of 
pro-inflammatory genes [296, 297]. The enhancement of 
microglial proinflammatory response, as previously dis-
cussed, would augment their phagocytic activity, para-
doxically, this contrasts with the reduced phagocytosis 
observed in LDAM [172, 294].

We postulated that age-related inflammation may 
modify the metabolic profile of microglia and facilitate an 
elevation in lipid anabolism [178]. However, due to mito-
chondrial dysfunction associated with aging, the aug-
mented synthesis of FAs cannot be timely metabolized 
and oxidized [291, 298, 300]. Consequently, these FAs are 
initially sequestered within LDs as a protective measure 
against lipid toxicity resulting from excessive accumula-
tion. Additionally, LDAM lacks sufficient energy for driv-
ing morphological changes and performing phagocytic 
functions [217]. Furthermore, unlike pathological con-
ditions where there is a significant amount of material 
available for phagocytosis, physiological aging does not 
involve such extensive uptake.

In addition, the aging of mitochondrial function leads 
to increased production of ROS, while the reduced level 
of autophagy hinders timely removal of aging mitochon-
dria. On one hand, ROS accumulation can mediate the 
expression of inflammatory factors associated with oxi-
dative stress; on the other hand, it can initiate LD accu-
mulation to accommodate protective unsaturated lipid 
components in response to oxidative stress [163, 253, 
291]. On the contrary, it has been demonstrated that LD 
accumulation in LDAM can elevate cellular ROS burde 
[178]. Conflicting reports exist regarding whether ROS is 
a cause or consequence of LD formation [301,302].

The mechanisms underlying the monitoring and 
phagocytic clearance of microglial cells, which fulfill 
phagocytic functions within the central nervous system, 
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remain poorly elucidated [294, 303]. Targeting LDAM 
may represent an appealing therapeutic approach for 
delaying aging and age-related neurodegeneration.

Discussion
This review summarizes the composition, biogenesis, 
and turnover of LDs in CNS. It also examines the distinct 
formation mechanisms of LDs across various cell types 
under diverse pathological conditions, their biological 
functions, and their interactions with neuroinflamma-
tion. LDs serve not only as passive lipid storage compart-
ments, but also play a pivotal role in the initiation and 
progression of diverse pathophysiological processes, such 
as stress, neuroinflammation, and energy metabolism, 
depending on the state of the central nervous system 
(e.g., ischemia, neurodegeneration, and aging) [21, 55, 
110, 304]. As the two most prevalent types of glial cells 
in CNS, microglia and astrocytes containing LD exhibit 
distinct functional phenotypes, which can either confer 
protection against disease effects on the CNS or exacer-
bate disease progression [172,173]. LDs in microglia are 
primarily linked to inflammation, along with alterations 
in microglial phenotype and their phagocytic function. 
Conversely, astrocytes typically exhibit LD formation 
in response to stressors such as lipid toxicity. Revealing 
the functional phenotypes of various LD-containing glial 
cells could serve as the fundamental focus in endeavors 
to postpone the onset and progression of the disease 
[305].

In recent years, extracellular vesicles (EVs) have 
emerged as a focal point in the investigation of physi-
ological and pathological processes within the nervous 
system [306–308]. LDs exhibit a comparable morphology 
and structural composition to EVs. Nevertheless, there is 
a paucity of research dedicated to their comparative anal-
ysis. Here, we delineate the similarities and distinctions 
between these two entities concerning their composition, 
dimensions, biosynthetic and degradative pathways, sites 
of biological impact, classification, and methodologies 
for isolation and detection (Table  1). Owing to techno-
logical constraints, prior research has predominantly 
focused on the physicochemical attributes and biological 
behaviors of LDs within cellular environments, preclud-
ing their isolation ex vivo to achieve high-purity samples. 
Furthermore, the absence of a comprehensive classifica-
tion and nomenclature framework for LDs has led to a 
less nuanced understanding of their heterogeneity com-
pared to that of EVs [309, 310]. The burgeoning advance-
ments in EVs separation and detection technologies 
suggest that novel techniques will likely facilitate the iso-
lation and purification of LDs, thereby enabling a more 
precise characterization and enhancing our comprehen-
sion of the distinct roles LDs play in various neurological 

disorders [309]. Additionally, the influence of the inter-
play between LDs and EVs on both intra- and extracellu-
lar communication remains an intriguing area of inquiry.

Neuroinflammation facilitates lipid exchange between 
brain cells and between brain cells and the periph-
eral circulation. This process encompasses the cellular 
uptake of exogenous lipids and the efflux of intracellu-
lar lipids. Exogenous lipid sources encompass dead cells 
and myelin debris, amyloid β peptides (Aβ), and lipopro-
tein particles that are transferred between cells and from 
the peripheral bloodstream. Lipids in peripheral blood 
form complexes with apolipoproteins to create lipopro-
tein particles, which can traverse the blood–brain bar-
rier, particularly when it becomes more permeable due 
to inflammatory conditions, thereby entering brain tis-
sue [264]. Microglia facilitate the enhanced uptake of 
these lipoprotein particles through the up-regulation of 
Low-Density Lipoprotein Receptor (LDLR), TREM2, and 
LPL [311–313]. Astrocytes may also acquire lipids from 
alternative cellular sources, including APOE secreted by 
active neurons, to alleviate the lipid burden within neu-
rons [141]. The internalized lipoprotein particles serve as 
a source of lipids, such as fatty acids and cholesterol, for 
these glial cells.

However, neuroinflammation induces lipid efflux in 
various cell types within the CNS, such as neurons, astro-
cytes, and microglia, as well as pericytes and endothelial 
cells, which are critical components of the blood–brain 
barrier [314–316]. These cells frequently efflux choles-
terol via two primary mechanisms: firstly, by upregu-
lating cholesterol 24S-hydroxylase (CYP46A1), which 
facilitates the conversion of cholesterol into 24(S)-
hydroxycholesterol (24-OHC), a compound capable of 
freely crossing the blood–brain barrier [317]. Secondly, 
the activation of liver X receptor (LXR) by intracellular 
fatty acids, cholesterol, and their metabolites enhances 
the expression of ATP-binding cassette (ABC) transport-
ers, which facilitate the transport of cholesterol to extra-
cellular apolipoprotein-containing lipoprotein particles 
[318, 319]. Furthermore, Shiraz Dib et al. introduced an 
alternative mechanism of cholesterol efflux that involves 
passive diffusion [314].

Cholesterol efflux and the esterification of cholesterol 
into LDs may function as complementary passive mecha-
nisms to restore cellular homeostasis by alleviating the 
intracellular lipid burden [203]. In the study conducted 
by Anil G. Cashikar et  al., the simultaneous occurrence 
of cholesterol esterification and cholesterol efflux via 
the LXR/ABCA1 pathway was observed in astrocytes 
exposed to inflammation-induced microglial secretion of 
25HC [273].

As previously discussed, LDs have exhibited para-
doxical proinflammatory or anti-inflammatory effects 
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following I/R in various studies. We hypothesize that 
cPLA2α and ATGL/HSL may facilitate the production 
of inflammatory lipid mediators at distinct time points 
post-I/R, thus contributing to the neuroinflammatory 
signaling pathway (Fig. 3).

Acute inflammation may play a role in the up-regu-
lation of PLIN2 within one day following I/R [39, 173]. 
Additionally, the substantial quantity of FFAs generated 
through the process of microglia engulfing and degrad-
ing cell death debris and myelin can induce PLIN2 
expression via the stimulation of PPAR [204, 320]. It 
has been demonstrated that the upregulation of PLIN2 
precedes the increase in the number of LDs [173]. Fur-
thermore, PLIN2 may play a role in the upregulation of 

inflammatory levels following I/R, as previously men-
tioned, and it may also protect nascent LDs from lipolysis 
by ATGL/HSL [31]. On the other hand, inflammation can 
activate cPLAα to generate inflammatory lipid mediators 
through the decomposition of glycerol phospholipids, 
thereby participating in the acute inflammatory response 
following I/R [321]. Concurrently, PLIN2 may play a role 
in sustaining the abundance of phospholipids, which 
serves as a precursor for the cPLAα pathway to produce 
these inflammatory lipid mediators [204]. At this junc-
ture, it is primarily PLIN2 that exerts a significant influ-
ence on the promotion of inflammation. PLIN2 functions 
as a marker for LDs, thereby creating the impression that 

Fig. 3  Distinct Mechanisms Underlying the Proinflammatory Effects of Lipid Droplets in the Two Stages Following Cerebral Ischemia–Reperfusion 
Injury. A: PLIN2 assumes a pivotal role in the process by which lipid droplets contribute to neuroinflammation during the early stages 
following cerebral ischemia–reperfusion injury. B: In the later stages following cerebral ischemia–reperfusion injury, the ATGL/HSL pathway serves 
as the primary mechanism for the degradation of triglycerides within lipid droplets, thereby supplying precursors essential for the synthesis 
of inflammatory lipid mediators. This pathway is a critical factor in the promotion of neuroinflammation by lipid droplets. TLR4 Toll Like Receptor 
4, TNF-α tumor necrosis factor α, IL Interleukin, NLRP3 nucleotide-binding oligomerization domain like receptor pyrin domain containing 3. COX 
cyclooxygenase, LOX Lipoxygenases, CYP Cytochrome P45, cPLA2α calcium-dependent cytosolic phospholipase A2 alpha, PUFAs polyunsaturated 
fatty acids, TAK1 TGF-β-activated kinase 1, MKKs mitogen-activated protein kinase kinases, p38 MAPKs phosphorylated p38 mitogen-activated 
protein kinases, AP-1 activator protein-1, PI3K phosphatidylinositol 3-kinase, AKT protein kinase B, ATGL adipose triglyceride lipase, HSL 
hormone-sensitive lipase, PLIN perilipin, LAMP2A lysosome-associated membrane protein 2A
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an increase in the number of LDs is correlated with an 
upregulation of inflammation levels.

Three days post I/R, a significant increase in LD forma-
tion is observed [174], indicating that intracellular free 
lipid levels decline to a point where they no longer effec-
tively stimulate PPARs to promote PLIN2 expression. 
Consequently, the PLIN2 level diminishes, as lipases such 
as ATGL/HSL typically require the removal of PLIN2 via 
the CMA pathway to exert their functions [37, 87]. Fur-
thermore, at this time point, the lipid composition of LDs 
is predominantly comprised of TAG [174], which serves 
as a substantial source of lipid precursors for the gen-
eration of inflammatory lipid mediators via the ATGL/
HSL pathway. Therefore, the inhibition of ATGL enzyme 
activity at this time point led to a reduction in the levels 
of inflammatory factors, indicating that the suppression 
of LD breakdown is correlated with the attenuation of 
inflammation.

This elucidates the paradoxical phenomenon wherein 
LDs exhibit either pro- or anti-inflammatory properties 
following I/R in various studies. Furthermore, cPLA2α 
and ATGL/HSL may operate independently to generate 
inflammatory lipid mediators at distinct time points post 
I/R. This insight could facilitate the development of more 
precise strategies for mitigating inflammation after I/R, 
such as inhibiting neuroinflammation by antagonizing 
PLIN2 during the acute phase and reducing inflamma-
tory mediators by suppressing ATGL enzyme activity in 
the subacute or chronic phases following I/R. Additional 
research is necessary to validate this hypothesis.

Conclusion
Under various inducing factors, the composition, dis-
tribution, and function of LDs in CNS exhibit hetero-
geneity. The question of whether these LDs serve as a 
protective mechanism or act as a driving force for pathol-
ogy remains to be elucidated. Future research should 
further employ lipidomics and proteomics technologies 
to explore the subtle compositional changes and corre-
sponding functional disparities of LDs in diverse patho-
logical stages and distinct spatial locations.
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