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Introduction
Major depressive disorder(MDD) is a prevalent mental 
disorder characterized by symptoms including low mood, 
diminished interest, slowed thinking, poor appetite and 
sleepless. According to the World Health Organization 
(WHO), more than 280  million people worldwide cur-
rently suffer from MDD, accounting for 3.8% [1] of the 
global population. MDD is marked by its limited recov-
ery rate and high suicide rate, and projected to become 
the leading cause of global disease burden by 2030. The 
pathogenesis of MDD remains unclear, and specific 
experimental diagnostic markers are not yet identified. 
Current clinical treatments for MDD primarily focus 
on medication-based approaches and psychotherapy. 
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Abstract
Major depressive disorder is a prevalent mental disorder, yet its pathogenesis remains poorly understood. 
Accumulating evidence implicates dysregulated immune mechanisms as key contributors to depressive disorders. 
This review elucidates the complex interplay between peripheral and central immune components underlying 
depressive disorder pathology. Peripherally, systemic inflammation, gut immune dysregulation, and immune 
dysfunction in organs including gut, liver, spleen and adipose tissue influence brain function through neural 
and molecular pathways. Within the central nervous system, aberrant microglial and astrocytes activation, 
cytokine imbalances, and compromised blood-brain barrier integrity propagate neuroinflammation, disrupting 
neurotransmission, impairing neuroplasticity, and promoting neuronal injury. The crosstalk between peripheral and 
central immunity creates a vicious cycle exacerbating depressive neuropathology. Unraveling these multifaceted 
immune-mediated mechanisms provides insights into major depressive disorder’s pathogenic basis and potential 
biomarkers and targets. Modulating both peripheral and central immune responses represent a promising 
multidimensional therapeutic strategy.
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Medication typically includes SSRIs, SNRIs, MAOIs, 
TCAs and anesthetics like ketamine. However, antide-
pressants face challenges such as slow onset of action, 
wide individual variation, and inconsistent long-term 
efficacy. Thus, unraveling the pathogenesis is essential for 
advancing the diagnosis and treatment of MDD.

Inflammation plays an important role in the patho-
physiology of MDD. Patients with chronic inflamma-
tory diseases have an increased risk of MDD [2], which 
is associated with immune dysfunction and the accu-
mulation of inflammatory factors [3]. Immune cells and 
associated cytokines interact with the brain through 
neurological, endocrine, and immune pathways, affect-
ing mood, cognition, and behavior. Patients with MDD 
also exhibit abnormalities in immune activity [4]. Both 
peripheral and central immune mechanisms contribute 
to the onset and progression of MDD through a com-
plex interplay of neuroinflammatory processes. Peripher-
ally, systemic inflammation with elevated cytokines, gut 
immune dysregulation and dysbiosis, immune dysfunc-
tion in liver, spleen and adipose tissue generate inflam-
matory signals impacting the brain. Neural connections 
also facilitate bidirectional propagation of peripheral and 
central inflammation [5–8]. Centrally, the infiltration of 
peripheral inflammatory mediators, aberrant microglial 
and astrocytic activation, imbalance of pro/anti-inflam-
matory cytokines, and subsequent neuroinflammation 
disrupts neurotransmission, impairs neuroplasticity, and 
causes neuropathological changes inside the brain [4, 9, 
10]. This multifaceted interaction between peripheral 
immune dysregulation and central neuroinflammation 
forms the immunological basis of MDD pathogenesis.

In this review, we explore the intricate interactions 
between peripheral and central immune mechanisms 
in the pathogenesis of MDD. By examining the role of 
neuroinflammation and immune dysregulation, we aim 
to provide a comprehensive understanding of how these 
processes contribute to depressive symptoms. This explo-
ration highlights potential biomarkers and therapeutic 
targets, paving the way for more effective, multidimen-
sional treatment strategies for MDD.

Peripheral immune and interactions between 
peripheral and central immune mechanisms
Systemic inflammation
Numerous factors are intricately associated with the 
pathogenetic mechanism of MDD. Among these, the 
systemic inflammatory response elicited by chronic 
stress, infection, and stress - inducing events occupies 
a pivotal position [11, 12]. Systemic inflammatory cyto-
kines, mainly including TNF-α, IL-1β, and IL-1 serving 
as significant indices reflecting the systemic inflamma-
tory status, furnish objective and indispensable criteria 

for the assessment of the degree of immune activation in 
patients with MDD [13].

The release of TNF-α into the bloodstream trig-
gers the activation the immune system and sevretion of 
other cytokines, such as IL-6, IL-1β, and IL-8, this pro-
cess exhibits an inherent congruence with relevant reac-
tions within the central nervous system [14]. TNF-α 
enhances IDO activity, shunting tryptophan metabolism 
towards kynurenine (KYN) pathway, reducing serotonin 
synthesis [15] and affecting mood and cognitive func-
tion [16]. Concurrently, KYN and its derivatives can 
activate microglia, thereby triggering a neuroinflamma-
tory response [17]. Moreover, peripheral KYN pathway 
markers can extend to the cerebrospinal fluid, directly 
affecting MDD at the central level. Clinically, peripheral 
TNF-α induces depressive-like symptoms and attenuates 
brain reward function [18, 19], while anti-TNF-α drugs 
show efficacy in treating refractory MDD [20].

Under the stimulation of chronic stress, monocytes 
and macrophages are activated, subsequently releas-
ing IL-1, IL-1β and IL-6, which act in concert to induce 
a systemic immune response [10, 21]. IL-1 promotes the 
activation of the hypothalamic- pituitary-adrenal (HPA) 
axis [22] thus precipitate in the onset of MDD. Addition-
ally, IL-1β can stimulate CD4 + T cells to differentiate into 
Th17 cells [23], leading to an imbalance in the Th17/Treg 
ratio and modifying the peripheral immune microenvi-
ronment [24]. In this state, peripheral inflammatory fac-
tors permeate the BBB, interferere with neurotransmitter 
metabolism and neural signal transmission, ultimately 
resulting in depressive and anxiety-like behaviors in 
chronic unpredictable mild stress (CUMS) mouse model 
[25]. Clinical investigations have also revealed a signifi-
cantly elevated serum IL-6 level in patients with MDD 
[26–29].

Conversely, Treg differentiation factor IL-2 was 
decreased in MDD patients [30]. Low-dose IL-2 miti-
gated depressive and anxiety behaviors in CUMS mice 
by rebalancing hippocampal Th17/Treg ratio, modulat-
ing Foxp3+/RORα and IL-6/TGF-β, and suppressing M1 
microglial and A1 astrocytic activation [31]. A phase II 
clinical randomized controlled study has demonstrated 
that IL-2 enhances the response to antidepressant treat-
ment [32].

Stress - related events can trigger an acute stress 
response, resulting in a transient activation of the 
peripheral immune system. The level of C - reactive pro-
tein (CRP) is closely correlated with the intensity of the 
inflammatory response within the body, and an elevation 
in its level implies an enhanced inflammatory condition. 
Multiple studies have corroborated that the CRP level 
is elevated in depressive patients [33–35]. However, no 
significant disparity in the CRP level has been observed 
between patients with first-episode major depressive 
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disorder (FEMD) and those with recurrent major depres-
sive disorder (RMD) [36, 37].

The interaction between central and peripheral 
immune mechanisms is facilitated through both cytokine 
signaling and neural pathways. Systemic inflammatory 
cytokines can increase the permeability of the blood-
brain barrier, allowing inflammatory mediators to enter 
the brain, acting on brain immune cells to trigger a neu-
roinflammatory response. These cytokines also diffuse 
along nerve fibers to areas in prefrontal cortex, hippo-
campus, and amygdala, act directly on neurons, initiating 
NF-κB and JAK-STAT signal transduction pathways [38, 
39]. This affects neurotransmitter production, neuroplas-
ticity, and neuronal survival [40].

Gut immune and gut-brain axis
The intestine is not only essential for digestion and nutri-
ent absorption but also represents the largest compart-
ment of the immune system. With a vast number of 
immune cells and microbial communities, the gut inter-
acts through neural, endocrine, and immune pathways 
with central nervous system and brain function, known 
as the gut-brain axis. Gut immunity and gut-brain axis 
are emerging as a critical component in the development 
and progression of MDD [41].

Immune responses in the gut elevate the levels of pro-
inflammatory cytokines such as IL-6, TNF-α, and IL-1β 
which trigger systemic inflammation [42], alter brain 
function by affecting neurotransmitter systems, neu-
roplasticity, and the integrity of the blood-brain barrier 
and consequently induce MDD [43]. The activation of 
intestine immune system also increases gut permeability, 
allowing endotoxins like LPS to enter the bloodstream 
and promote neuroinflammation, further exacerbating 
depressive symptoms [44].

In addition, gut microbiota plays a potential regulatory 
role in MDD. Studies have indicated patients with MDD 
are disturbed by both the composition and amount of gut 
microbiome [45, 46]. Gut microbiota also participates 
in the development of MDD through interactions with 
immune cells. A mouse model study reveals Lactobacil-
lus species involved in colonic IL-17-producing γδ T cells 
differentiation and contributes to MDD by their menin-
geal accumulation [47].

Moreover, metabolites and neuroactive substances pro-
duced by gut microbiota are involved in the pathophysiol-
ogy of MDD by regulating immune responses and neural 
functions. Short-chain fatty acids (SCFAs) modulate cen-
tral activity through fatty acid receptor 2 (FFA2) and free 
fatty acid receptor 3 (FFA3) [48]. SCFAs can directly 
target microglia without passing through receptors and 
exert inhibitory effects on histone deacetylase (HDAC) 
activity, nuclear factor-kappa B (NF-κB) activity, and 
lipopolysaccharide (LPS)-induced neuroinflammation 

[49]. Moreover, some SCFAs can cross the blood-brain 
barrier (BBB) by diffusion [50, 51] or via monocarboxyl-
ate transporter proteins located on endothelial cells and 
inhibit inflammatory responses [52]. Neuroactive sub-
stances produced by gut microbiota, such as serotonin 
(5-HT) and gamma-aminobutyric acid (GABA), are 
also involved in the regulation of mood and behavior. In 
depressive states, the gut microbiota induce alterations in 
5-HT [53–55]and GABA [56, 57] and activate the vagus 
nerve (VN), passing inflammation signal to the brainstem 
and hippocampus, exacerbating depressive conditions 
[58]. Additionally, gut hormones also regulate physiologi-
cal functions and cognitive processes in the brain. GLP-1 
secreted by intestinal enteroendocrine L-cells bind with 
receptors distributed in the hippocampus and hypothala-
mus, participating in learning, memory, and emotional 
regulation [59]. Research demonstrate GLP-1 receptor 
agonists can alleviate depressive symptoms by inhibiting 
the release of pro-inflammatory cytokines and reducing 
neuroinflammation, suggesting potential applications 
of gut hormones in the treatment of MDD [60]. Studies 
indicate that cholecystokinin(CCK) secreted by secre-
tory cells in the mucosal lining of the small intestine play 
a role in synaptic plasticity changes related to learning 
and memory [61]. In CSDS-induced depressive mouse 
models, excitatory synaptic transmission in the CCK-
BLA-D2NAc glutamate aversion circuit is significantly 
enhanced, inhibition of this circuit can effectively over-
come depressive symptoms [62]. These molecules medi-
ate bidirectional communication between the gut and the 
brain, revealing key links in the pathogenesis of MDD.

Pathological changes in MDD in turn contribute to 
dysbiosis by altering the gut environment [63, 64]. Empir-
ical evidence from clinical studies reveals that individu-
als afflicted with MDD demonstrate heightened levels of 
Bacteroidaceae, Desulfovibrionaceae, and Enterococca-
ceae, in contrast to individuals with robust health [65]. 
This imbalance in microbial composition facilitates the 
overproduction of pro-inflammatory cytokines, includ-
ing TNF-α [66, 67], thereby intensifying the inflamma-
tory response within the gut.

Liver immune
The liver is a multifunctional organ, performing critical 
physiological functions such as immunity, metabolism, 
and detoxification. Changes in its structure and func-
tion can impact brain activity [68, 69]. Studies have found 
that mood disorders are prevalent among patients with 
chronic liver disease [70], suggesting that alterations in 
liver structure and function may trigger or exacerbate 
MDD.

As liver function declines, neurotoxic compounds 
accumulate in the body, leading to elevated blood ammo-
nia levels. Once ammonia enters the brain through the 
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bloodstream, it is taken up by astrocytes and metabo-
lized into glutamine, which activates NMDA receptors. 
This activation results in intracellular calcium overload, 
affecting synaptic function and consequently, brain func-
tion [71, 72]. Elevated levels of ammonia and glutamate 
also promote microglial activation, leading to the release 
of inflammatory cytokines and the induction of neuroin-
flammation, ultimately contributing to the onset of MDD 
[73].

In pathological states, the number of immune cells in 
the liver and their production of inflammatory cytokines 
increase. These cytokines can enter the brain via neuro-
endocrine pathways or the bloodstream [42], altering 
the permeability of the BBB and inducing neuroinflam-
mation, which affects neurotransmission and neuronal 
function, thereby triggering or worsening depressive 
symptoms [74].

Beyond directly impacting brain function, the liver can 
influence the brain through the gut. The liver, gut, and 
brain form a communication network known as the gut-
liver-brain axis [75]. The liver can alter the composition 
and quantity of gut microbiota and their metabolites, 
which, through the VN or activation of the hypotha-
lamic-pituitary-adrenal (HPA) axis, can modify neural 
signals in various brain regions. These changes affect 
reward, motivation, mood, and stress responses [76, 77], 
thereby promoting the development of MDD.

Traumatic brain injury induces alterations in cerebral 
lipids, with lysophosphatidyl choline (LPC) and choles-
terol esters (CE) being the most impacted lipid families in 
the hippocampus. Concurrently, it perturbs lipid metab-
olism and inflammatory markers in the liver, exacerbating 
hepatic inflammation [78]. Clinical studies have revealed 
fluctuations in leptin levels among depressed patients 
[79]. Leptin mitigates hepatic lipid levels by augmenting 
the secretion of triglycerides and diminishing lipogenesis 
[80], thereby alleviating inflammation triggered by lipid 
overload and lipotoxicity [81].

Spleen immune
The spleen, the largest lymphatic organ in the human 
body, performs crucial functions in immunity, hemato-
poiesis, and inflammation. With the physical function of 
filtering pathogens and abnormal cells from the blood, 
spleen facilitate interactions between antigen-presenting 
cells (APCs) and homologous lymphocytes [82]. Zhang 
X et al. have demonstrated a direct connection between 
CRH neurons and the splenic nerve, which regulates 
adaptive immunity, providing further evidence of a direct 
link between MDD and immune organs [83].

Further studies reveal that imbalance in regulatory B 
cells and plasma cells cause increased psychosocial stress. 
Splenic-derived B cells may influence behavior by modu-
lating meningeal myeloid cell activation and meningeal 

interferon responses leading to MDD [84]. Additionally, 
a clinical study showed that high levels of CD8 + T cells 
can induce MDD [85]. Repeated stimulation of neurons 
expressing D1 receptors in the nucleus accumbens of 
tumor-implanted mice significantly increases the number 
of CD8 + T cells in the spleen [86]. Therefore, inhibiting 
the exhaustion of splenic CD8 + T cells and improving 
immune system function may become novel therapeutic 
targets for treating MDD.

Research indicates that corticosterone (CORT)-
induced depressive-like mice exhibited impaired splenic 
function, immunity, and differential expression of genes 
and brain/splenic proteins, suggesting an interplay 
between splenic immune dysregulation and MDD patho-
genesis [87]. As was shown in mouse model, stimulation 
of the ventral tegmental area of the brain, part of the 
brain’s reward circuitry, boosted splenic activity and con-
sequently enhanced the adaptive immune response [88]. 
Moreover, under chronic stress, there is an escalation in 
the secretion of catecholamines [89], which, upon inter-
action with α and β adrenergic receptors in the spleen, 
can precipitate a reduction in splenic volume and induce 
immunosuppression [90, 91].

Adipose tissue immune
In addition to the liver, gut, and spleen, adipose tissue 
also plays a role in the development of MDD by regulat-
ing brain function. Adipocytes secrete cytokines such 
as TNF-α, IL-6, and chemokine MCP-1, leading to the 
accumulation of inflammatory cells in adipose tissue and 
creating a chronic inflammatory environment [92]. Stud-
ies have shown that individuals with obesity have higher 
levels of free fatty acids and immune cells compared to 
healthy individuals. These substances cause abnormal 
proliferation of hypothalamic microglia, subsequently 
affecting the functions of the hippocampus, amygdala, 
and reward centers [93], regions whose dysfunction is 
closely associated with the onset of MDD. Furthermore, 
dietary studies indicate that a high-fat diet can affect syn-
aptic plasticity, insulin signaling, and corticosterone lev-
els, thereby induce MDD [94].

Neural networks
Recently, emerging evidence suggested that neural net-
works connecting the brain with key peripheral immune 
organs influence both immunological responses and 
depressive behaviors [95], mainly through vagus nerve 
(VN) and sympathetic nervous system [96, 97].

Bone marrow receives dense sympathetic innervation 
[98] from PVN, medulla and VLM, these fibers suppress 
expression of CXCL1233 in the bone marrow, inhib-
its hematopoiesis, retains neutrophils and monocytes 
[99]. Neurons from NTS, DMV, and PVN, innervate 
the spleen. These neural connections influence splenic 
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macrophages and T cells, modulating cytokine produc-
tion and systemic inflammation. Restraint stress activates 
the cholinergic pathway via the sympathetic system, trig-
gering anti-inflammatory programs in splenic cells [100, 
101]. Neural circuits connecting the brain to the liver 
involve both sympathetic and parasympathetic pathways 
[102]. Hypothalamic regions, such as the PVN, and brain-
stem nuclei innervate the liver [103], regulating hepatic 
glucose production, lipid metabolism, and immune 
responses [104]. Stress-induced activation of these path-
ways can lead to hepatic inflammation, macrophage infil-
tration and metabolic syndrome, conditions frequently 
associated with MDD [105, 106]. Neurons in the arcuate 
nucleus (ARC) and PVN project to adipose tissue, influ-
encing lipolysis, glucose metabolism, and immune cell 
activity within the adipose tissue, through sympathetic 
and parasympathetic pathways. Dysregulation of these 
pathways promoting inflammation and metabolic distur-
bances that are often comorbid with MDD.

The vagus nerve is the primary neural conduit linking 
the gut to the brain. Alterations in vagal tone can affect 
gut permeability and microbiota composition, leading to 
immune activation and production of pro-inflammatory 
cytokines [107]. Within the gut, the neural signals relayed 
by the brain are received by the enteric nervous system, 
consisting of approximately 2 to 6  million neurons, glia 
and extrinsic ganglia [108]. ENS system play a crucial role 
in maintaining gut homeostasis and preventing excessive 
immune activation [109], and contribute significantly to 
the progression of MDD by mediating the exacerbation 
of intestinal inflammation induced by chronic stress 
[110].

Vagus nerve stimulation (VNS) has been explored as a 
therapeutic intervention for MDD, highlighting its poten-
tial to modulate immune responses and improve mood. 
VNS can activate α7 nicotinic acetylcholine receptors, 
reducing TNF-α production induced by LPS in microglia, 
restoring balance in the immune system, thus providing 
neuroprotection [111]. This therapeutic approach under-
scores the importance of the vagus nerve in the neural 
regulation of immune functions and its potential in treat-
ing MDD.

In conclusion, neural networks linking the CNS to 
peripheral immune organs are integral to the bidi-
rectional communication between the brain and the 
immune system. Neural signals potentially precipitate 
in MDD by increasing circulating immune cell numbers, 
altering immune cell chemotaxis, or making them more 
responsive to systemic inflammatory signals.

HPA axis
Stress significantly impacts the immune response and the 
pathological process of MDD through the HPA axis. The 
HPA axis regulates physiological functions by affecting 

hormone production and the activity and distribution of 
immune cells [112].

Patients with MDD typically exhibit increased secre-
tion of adrenocorticotropic hormone (ACTH), which 
stimulates the adrenal glands to produce more gluco-
corticoids (GCs). Under chronic stress, elevated blood 
GC levels and reduced GR expression impair the normal 
feedback regulation of GRs. This results in persistent 
hyperactivity of the HPA axis, which maintains high GC 
levels [113] and upregulates inflammatory pathways, trig-
gering an inflammatory response in hippocampal cells 
[114]. It also activates microglia [115], leading to neu-
roinflammation and persistent depressive symptoms. 
Studies have shown that using GR antagonists, such as 
mifepristone, can modulate cortisol and ACTH levels 
and improve clinical manifestations in depressed patients 
[116, 117].

Both chronic stress stimuli and peripheral inflamma-
tory states are capable of leading to sustained activation 
of the hypothalamic-pituitary-adrenal axis (HPA axis), 
resulting in increased secretion of stress hormones such 
as cortisol. Cortisol directly promotes the release of pro-
inflammatory cytokines and inhibits the synthesis and 
release of serotonin, dopamine, norepinephrine and anti-
inflammatory cytokine IL-10. This imbalance of cyto-
kines and changes in neurotransmitters further promote 
the spread of inflammatory responses throughout the 
body, leading to depressed mood, anxiety, and sleep dis-
turbances. At the same time, cortisol can affect the bal-
ance of neurotransmitters and neuronal plasticity in the 
prefrontal cortex, hippocampus, and amygdala [118].

In conclusion, peripheral inflammatory mediators are 
capable of traversing the blood-brain barrier and entering 
the brain, where they activate microglia and astrocytes, 
eliciting a neuroinflammatory response. Functional alter-
ations in immune organs, including the gut, liver, spleen, 
and adipose tissue, can also influence brain activity, lead-
ing to aberrations in neurotransmitter metabolism and 
neuronal damage. Neural networks, including the vagus 
nerve and sympathetic nervous system, establish connec-
tions between peripheral immune organs and the brain, 
modulating immune responses and depressive behav-
iors. Furthermore, stress can impact the hypothalamic-
pituitary-adrenal (HPA) axis, altering hormone levels and 
cytokine balance, ultimately triggering a systemic inflam-
matory reaction that manifests as depressive symptoms. 
These mechanisms are illustrated in Fig. 1.

Central immune mechanisms in MDD
As discussed, peripheral immune activation affect the 
central nervous system through various pathways, pre-
cipitating and exacerbating depressive symptoms. More-
over, once peripheral inflammatory molecules gain access 
to the brain, they inevitably activate the resident immune 



Page 6 of 19Jiao et al. Journal of Neuroinflammation           (2025) 22:10 

cells of the central nervous system, initiating a cascade of 
neuroinflammatory responses. Central immune mecha-
nisms centered around the blood-brain barrier breach, 
microglial and astrocytic activation, and propagation 
of inflammatory signaling pathways leads to neuronal 
injury, neurotransmitter dysregulation, and functional 
impairment of brain regions, ultimately manifesting in 
the clinical symptoms of MDD.

Blood-brain barrier (BBB) integrity
The blood-brain barrier (BBB) is a highly selective, 
semi-permeable barrier that separates the peripheral 
circulatory system from the brain and the central ner-
vous system (CNS). It restricts the entry of non-specific 
immune cells and harmful substances into the brain, 

protecting the nervous system from external threats. 
However, when the organism is attacked by inflamma-
tion, the permeability and integrity of the BBB is com-
promised [119], allowing inflammatory factors to enter, 
exacerbating the neuroinflammatory response and par-
ticipating in the onset of various neurological diseases 
including Alzheimer’s disease, multiple sclerosis, Parkin-
son’s disease and MDD [6, 120–122].

In patients with MDD, the HPA axis got activated, 
leading to release of glucocorticoids [123]. Glucocorti-
coids bind to glucocorticoid receptors (GR) and miner-
alocorticoid receptors (MR) located in the prefrontal 
cortex and limbic system [124], degrading tight junction 
proteins [125], enabling the passage of immune cells and 

Fig. 1 Peripheral immune and interactions between peripheral and central immune mechanisms
The figure shows the complex interaction between peripheral and central immune mechanisms during inflammation. Inflammatory cells in adipose 
tissue secrete cytokines (IL − 6, MCP − 1, TNF - α), activating sympathetic nerves, the HPA axis, and bone marrow, causing the release of hormones (CRH, 
ACTH, cortisol). Inflammatory cytokines increase brain glutamine, activate the vagus nerve, and elevated blood ammonia from liver metabolism damages 
the blood - brain barrier. Also, cytokines, bile acid, and immune cells disrupt the intestinal barrier, increasing bacterial translocation and the inflammatory 
response. This activates immune cells (B cells, plasma cells, neutrophils, monocytes) and cause the releasing of inflammatory mediators (cytokines, GABA, 
GLP − 1, G - CSF). The figure emphasizes the complex interaction involving various systems, cytokines, hormones, and neurotransmitters in inflammatory 
conditions
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inflammation mediators through the BBB, which affect 
brain function and cause depressive symptoms.

Moreover, under chronic stress, altered neurotrophic 
factor expression dysregulates tight junction proteins 
like Cldn5, compromising BBB structural integrity [126, 
127]. Inflammatory stimuli like LPS also activate brain 
endothelial caspase-4/11-GSDMD signaling, leading to 
inflammatory BBB damage [128].

Studies in chronic restraint stress (CRS) and CSDS 
mouse models have have demonstrated BBB disruption 
as a key factor contributing to depressive-like behav-
iors [129–131]. The excessive release of peripheral pro-
inflammatory factors directly acts on endothelial cells, 
leading to cytoskeletal remodeling and a decrease in the 
stability of tight junctions, resulting in the increased of 
BBB leakage [8, 132]. Under chronic stress, the neuro-
trophic factor GDNF alters the expression of the blood-
brain barrier tight junction-associated protein Cldn5. 
The inflammatory environment impairs BBB structural 
integrity, promoting BBB hyperpermeability [133]. Addi-
tionally, under lipopolysaccharide (LPS) stimulation, the 
caspase-4/11-GSDMD signaling pathway in brain endo-
thelium is activated, leading to inflammatory BBB dam-
age [128].

Leakage of the BBB allows cytokines and chemokines 
to enter the brain [134] and interact with various recep-
tors. They directly damage neurons and exacerbate 
depressive symptoms by decreasing serotonin, dopamine, 
and norepinephrine levels [135, 136]. Inflammatory 
mediators entering the brain through the damaged BBB 
also reduce synaptic plasticity in neurons and impede 
neurogenesis, affecting mood regulation [137]. Moreover, 
cytokines and chemokines further activate microglia and 
astrocytes, creating a feedback loop. Overactivation of 
microglia releases cytokines such as IL-1β, causing oxida-
tive stress, apoptosis and impairment of neuronal func-
tion, all of which are crucial pathological bases for MDD 
[138]. The entry of IL-1β and TNF-α into the brain via 
the BBB, induces the production of CXCL1 and Ccl2 
from astrocytes, which attracts immune cells to infiltrate 
brain tissue and damage neurons [139]. Immune cells 
also enter the brain by upregulating adhesion molecules 
and integrins, adhering to the vessel wall [140]. T cells 
and macrophages, enter the brain parenchyma, via the 
BBB, causing or exacerbating neurological damage and 
depressive symptoms.

Cytokine and neurotrophic factors
Within the central nervous system, cytokines contribute 
to neuroinflammation and disruption of neuronal func-
tions underlying mood regulation in MDD [141, 142]. 
The balance between pro-inflammatory and anti-inflam-
matory cytokines plays crucial role in the pathogenesis 
of MDD. Once this balance is disrupted, a vicious cycle 

emerges wherein an enhanced inflammatory response 
further triggers depressive symptoms. These symptoms, 
in turn, may exacerbate the inflammatory response, cre-
ating a complex and prolonged pathological process 
[140].

Pro-inflammatory cytokine TNF-α directly acts on 
neurons in the brain, inducing oxidative stress and neu-
rotoxicity, activating astrocytes, caus hippocampal atro-
phy [143–145]. Inhibition of the TNF-α/TNFR1/NF-κB 
signaling pathway reduces microglial overactivation and 
neuroinflammation, preventing the worsening of depres-
sive symptoms [146]. Additionally, TNF-α also enhance 
neuronal excitability by modulating glutamate receptor 
function and promoting the transcription of Nav1.3 and 
Nav1.8 [147]. Administration of TNF-α inhibitors inflix-
imab, reduces cortical neuronal activity and ameliorates 
depressive-like behavior in adults with bipolar depression 
reporting physical and/or sexual abuse [20, 148].

Clinical studies have shown patients with MDD experi-
ence elevated IL-1β concentrations in cerebrospinal fluid 
and increased hippocampal inflammation [149]. Unlike 
TNF-α, IL-1β inhibits neuronal excitability by modu-
lating glutamate receptors and decreasing ionic fluxes 
through voltage-gated sodium channel(Nav), voltage-
gated calcium channel(Cav), and voltage-gated potassium 
channel(Kv) channels [150], leading to depressive-like 
responses.

IL-6 inhibits excitatory neurotransmission and basal 
neural activity by promoting the upregulation of the ade-
nosine A1 receptor and modulation of the Cav channel 
[151, 152]. In the cerebrospinal fluid, IL-6 activates the 
MAPK and IDO pathways, reducing monoamine avail-
ability and directly affecting synaptic neurotransmission. 
It also indirectly affects intracellular pathways through its 
G-protein-coupled receptor, negatively regulating neu-
rotransmitter release and impacting neuronal activity 
and plasticity [153].

IFNγ exhibits presynaptic actions that increase the 
release of the inhibitory neurotransmitter GABA via 
nitric oxide [154], leading to learning and memory 
impairments and social behavioral deficits [155]. Block-
ade of the IFNγ receptor or specific deletion of the IFN-I 
receptor in microglial cells (IFNAR) reduces synaptic 
loss, reactive microglial cell proliferation, and learning 
deficits [9].

Interleukin-4 (IL-4), Interleukin-8 (IL-8), interleu-
kin-10 (IL-10), and transforming growth factor-β (TGF-
β) play protective roles in the development of MDD 
[156]. IL-4 regulating hippocampal neurogenesis and 
resilience to MDD through Arg1 + microglia [157]. 
Defects in IL-4Rα cause reduced neuronal inhibitory syn-
aptic function and vesicles, increase cortical excitability 
[158], alleviating depressive symptoms, anxiety, and sleep 
disturbances [159]. In patients with MDD, IL-10 levels 
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are reduced [160]. Exogenous IL-10 restores the density 
of dendritic spines in microglia in the hippocampus and 
alleviate depressive symptoms [161, 162]. Higher levels of 
IL-8 attenuate depressive responds caused by endotoxin 
response [163–166]. Lack of these anti-inflammatory 
cytokines may exacerbate neuroinflammation and mood 
dysregulation.

Neurotrophic factors are essential for the survival, 
maintenance, and regeneration of specific neuronal 
populations in the mature brain, and they significantly 
contribute to the development of MDD. Brain-derived 
neurotrophic factor (BDNF) levels are decreased in 
patients with MDD [167], particularly in the hippocam-
pus [168]. This reduction leads to diminished synaptic 
plasticity, atrophy of dopaminergic neurons, and atro-
phy of the hippocampal and prefrontal cortex, primarily 
affecting brain homeostasis [169]. In vitro studies indi-
cate that the BDNF-TrkB pathway is crucial for form-
ing functional neural networks; blocking TrkB receptors 
impairs calcium activity, alters synaptic structure, and 
disrupts mitochondrial function, thus affecting neural 
network development [170]. In mouse model, knock-
down of astrocytic glutamate transporters GLAST/
GLT-1 with siRNA in the infralimbic cortex induced 
behavioral abnormalities characteristic of a depressive-
like phenotype, accompanied by reduced serotonin 
release in the dorsal raphe nucleus and decreased BDNF 
expression [171]. Conversely, increased BDNF levels 
support neuronal survival and differentiation, improv-
ing the structure and function of multiple brain regions 
and influence MDD progression [172, 173]. Research on 
ketamine as a novel antidepressant suggests that BDNF 
release in the medial prefrontal cortex [174] activates 
the TrkB signaling pathway, promoting neurogenesis 
[175–177]. Blocking postsynaptic N-methyl-D-aspartate 
(NMDA) receptors can rapidly enhance BDNF protein 
translation [178, 179], coordinating CREB/mTOR activa-
tion and leading to synaptic potentiation [180].

Glial cell line-derived neurotrophic factor (GDNF) 
is also vital for neural function and signal transduction, 
supporting dopaminergic neuron survival in the substan-
tia nigra and exhibiting protective effects [181]. Studies 
on conditional Gfra1 knockout mice demonstrate that 
GDNF and its receptor Gfra1 mediate dendritic growth 
and spine formation in hippocampal neurons via neu-
ral cell adhesion molecule signaling [182, 183]. Another 
study showed that administering exogenous GDNF 
increases dopamine receptor D1 protein levels, activating 
the protein kinase A pathway and producing a prolonged 
antidepressant response [184]. The rhesus monkey model 
confirmed that GDNF is widely expressed in hippocam-
pal dendrites, associated with neuronal survival, nerve 
regeneration, and functional recovery [185]. In addition, 
clinical studies reveal an association between reduced 

gray matter volume in the basal frontal lobe in patients 
with MDD and GDNF [186]. Other neurotrophic factors, 
such as midbrain astrocyte-derived neurotrophic factor 
(MANF), nerve growth factor (NGF), neurotrophin-3 
(NT-3) and neurotrophin-4 (NT-4), also play protective 
roles in hippocampal neuronal survival and growth, with 
decreases hindering the alleviation of depressive symp-
toms [187–190]. Endothelial growth factor (VEGF), in 
addition to its angiogenic role [191], possesses neuro-
trophic and neuroprotective potential [192, 193]. It can 
stimulate the genesis of hippocampal neurons and safe-
guard neurons associated with stress from damage [194, 
195]. Erythropoietin (EPO) can modulate the JAK2/
STAT5 signaling pathway, thereby exerting anti-inflam-
matory effects and preventing neuroinflammation [196].

Central nervous system inflammation
Compromised blood-brain barrier integrity, along with 
dysregulated cytokine and neurotrophic factor signaling, 
predisposes the central nervous system to an inflamma-
tory state. Inflammation activates microglia and astro-
cytes, causes neuronal damage and apoptosis, impairs 
functional connectivity and significantly alters the struc-
ture and function of critical brain regions (including the 
hippocampus, frontal lobe, amygdala and striatum) [138, 
197, 198].

The hippocampus is predominantly associated with 
learning, memory, and emotional regulation [199]. Hip-
pocampal volume reduction represents a characteristic 
alteration in MDD. Reduced hippocampal gray matter 
volume has been closely linked to memory and emotional 
disturbances in MDD patients. MDD-related neuroin-
flammation has also been reported to affect cognitive 
and memory functions by affecting neurogenesis in the 
dentate gyrus (DG), leading to inattention, impaired 
working memory, and increased negative cognitive bias 
[200]. In addition, reduced serotonin levels lead to neuro-
nal degeneration, swelling, and significant neuronal loss 
in the hippocampal CA1, CA3, and DG regions, further 
exacerbates the negative emotional state [201]. Effective 
antidepressant treatment and electroconvulsive therapy 
(ECT) has been shown to reverse structural changes in 
the hippocampus, increase hippocampal volume, and 
improve depressive symptoms [202, 203].

The amygdala, together with the hippocampus, con-
stitutes key components of the cortico-limbic system, 
which is essential for emotion processing and regula-
tion [204]. In MDD, amygdala dysfunction is charac-
terized by hyper-reactivity, particularly in response to 
negative stimuli and decreased functional connectiv-
ity between the amygdala and other brain region [205]. 
Notably, inflammation within the central nervous system 
(CNS) has been shown to reduce functional connectivity 
between the amygdala and the ventromedial prefrontal 
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cortex (vmPFC), a disruption that correlates with the 
severity of anxiety symptoms in patients with MDD 
[206]. Elevated levels of inflammatory biomarkers have 
also been associated with increased amygdala activation, 
which is linked to symptoms of anxious arousal [207]. 
Recent research demonstrates that peripheral inflamma-
tion and amygdala-specific neuroinflammation, as indi-
cated by higher diffusion basis spectral imaging-based 
restricted fraction (DBSI-RF), are independently associ-
ated with depressive symptoms [208]. Clinical studies 
have shown that selective serotonin reuptake inhibitors 
(SSRIs) effectively reduce amygdala reactivity to negative 
stimuli [209].

Frontal lobe exhibits significant structural and func-
tional abnormalities in patients with MDD, particularly in 
the anterior cingulate cortex (ACC), orbitofrontal cortex 
(OFC), and dorsolateral prefrontal cortex (DLPFC) [210]. 
These changes include reduced gray matter volume, cor-
tical thinning, and decreased activity, which are associ-
ated with emotional dysregulation, lack of motivation, 
and cognitive impairments [211]. The ACC shows altered 
connectivity with the DLPFC and amygdala, acting as a 
bridge for attention and emotion regulation [212], while 
the OFC’s dysfunction reduce inhibition of negative stim-
uli [213]. Post-mortem brain tissue from Brodmann Area 
10 exhibits upregulation of inflammatory cytokines, sug-
gesting a link between local inflammation and pathologi-
cal changes [214]. Antidepressants, ECT, and transcranial 
magnetic stimulation (TMS) can partially reverse these 
abnormalities, correlating with depressive symptom 
improvement.

The striatum contains the putamen, the caudate, and 
the ventral striatum. Decreased gray matter volume 
and activity in the ventral striatum are associated with 
impaired reward processing and suicidal behaviors in 
patients with MDD [215]. The putamen shows reduced 
volume in patients with MDD, its increased functional 
activity has been linked to emotional dyscontrol and 
heightened feelings of self-hatred [216]. The caudate 
nucleus, a key component of the brain’s reward system, 
also shows reduced volume and activity in MDD, corre-
lating with disease severity and disrupted dopaminergic 
signaling [217]. Research in non-human primates dem-
onstrated peripheral inflammatory induce decreases in 
striatal dopamine release, which occur in association 
with reduced effort-based sucrose consumption [218]. In 
patients with MDD, peripheral inflammation marked by 
elevated CRP and sICAM-1, is associated with reduced 
striatal activation during reward processing, particularly 
in response to intermediate reward magnitudes [219].

An increased density of microglia has been observed 
in the amygdala and prefrontal lobes of the brains of 
depressed patients [220]. Microglia differentiate into mul-
tiple phenotypes at different stages of CNS development, 

stress and disease [221], the polarization of the M1/M2 
phenotype is associated with the development of MDD 
[222–224]. M1 type microglia secrete pro-inflammatory 
cytokines and neurotoxic mediators to exacerbate neuro-
nal damage, while M2 type microglia promote a repair-
ing anti-inflammatory response. Microglial polarization 
toward M1 phenotype disrupts neurogenesis in the hip-
pocampus [225], inducing functional brain damage [226, 
227]and exacerbating depressive symptoms [228]. Acti-
vated microglia release monocyte chemotactic protein-1 
(MCP-1), which recruits monocytes to the brain. Subse-
quently, the brain secretes pro-inflammatory cytokines 
IL-1β and IL-6 [229, 230], disrupting hippocampal neu-
rons and synaptic plasticity, thereby affecting brain func-
tion and inducing MDD [231, 232].

In MDD, the important effects of M1/M2 polarization 
dysregulation focus primarily on neurogenic inhibition. 
Although some degree of neurogenesis is also present in 
other psychiatric disorders like schizophrenia, the mech-
anism is more prominent in MDD. Unlike with MDD, 
M1/M2 polarization dysregulation in schizophrenia is 
mainly characterized by significant neuronal connectivity 
and neural circuitry abnormalities [233].

Microglia also acquire a neurotoxic phenotype through 
the phosphatidylinositol 3-kinase (PI3K)/Akt signal-
ing pathway, which produces reactive oxygen species, 
nitric oxide, proteases, and pro-inflammatory cytokines 
that accelerate neuronal damage [234]. This significantly 
affects the DGs and CA3 region of the hippocampus and 
leads to MDD. Inhibition of neural stem cell proliferation 
and differentiation in the DGs, a critical region for neuro-
genesis, affects pattern segregation in learning memory, 
and disruption of synaptic connectivity of neurons in the 
CA3 region, with a reduced density of dendritic spines, 
leads to cognitive dysfunction and emotion dysregulation 
[235, 236].

MDD and other psychiatric disorders, such as schizo-
phrenia (SCZ), sahres pathological alterations in the 
brain, but the patterns and characteristics of these 
changes differ significantly. MDD is primarily associated 
with emotional dysregulation, neurocognitive impair-
ments (such as attention and memory deficits), and 
alterations in reward processing, while schizophrenia 
cases experience both social cognitive deficits (difficul-
ties in identifying emotions, feeling connected to oth-
ers, inferring people’s thoughts and reacting emotionally 
to others [237, 238]) and neurocognitive impairments. 
For instances, hippocampal abnormalities are observed 
across both disorders, in MDD, the hippocampus shows 
reduced neurogenesis prominently in the DGs and CA3 
[204]. In contrast, SCZ displays more diverse hippocam-
pal abnormalities, including subfield-specific volume 
reductions (mainly in CA1 and CA2 regions), synap-
tic alterations, and disrupted connectivity with other 
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brain regions [239]. Moreover, schizophrenia is associ-
ated with broader pathological abnormalities, extending 
beyond the hippocampus to include regions such as the 
prefrontal cortex, thalamus, posterior cingulate cortex, 
and medial temporal lobes [240–242]. These distinctions 
highlight the unique neurobiological profiles of MDD 
compared to other psychiatric disorders.

In conclusion, the central immune mechanisms in 
MDD reveal inflammation as a pivotal orchestrator in 
disease pathophysiology, driving complex interactions 
between BBB disruption, neuroinflammation, and neu-
ronal dysfunction. BBB compromise allows peripheral 
inflammatory mediators to enter the brain, activating 
microglia and disrupting neural homeostasis. The bal-
ance of pro- and anti-inflammatory cytokines, along with 
neurotrophic factors, critically influences neuronal func-
tion, synaptic plasticity, and neurogenesis. This inflam-
matory cascade particularly affects key brain regions 
including the hippocampus, amygdala, frontal lobe, and 
striatum, which ultimately leads to the manifestation of 
characteristic clinical symptoms of MDD.

Therapeutic interventions targeting immune 
mechanisms
Pharmacological approaches
Regarding the immune mechanisms involved in the onset 
of MDD, drug strategies targeting the immune system 
have become a promising field of research. Clinical stud-
ies indicate that antidepressant drugs can reduce the 
levels of peripheral inflammatory factors and peripheral 
inflammatory responses [243].

A study by Casarotto et al.pointed out that all antide-
pressant, including tricyclic antidepressants (TCA), SSRI, 
monoamine oxidase inhibitors (MAOI), and ketamine 
are able to directly bind to TrkB and denature to increase 
BDNF signaling, directly linking the effects of antidepres-
sants to neuronal plasticity, which has important implica-
tions for reducing neuroinflammation [244].

Non-steroidal anti-inflammatory drugs (NSAIDs) 
have shown antidepressant effects in several short-term 
clinical studies [245]. NSAIDs inhibit COX activity and 
reduce the synthesis of inflammatory mediators such as 
prostaglandins, thereby reducing chronic inflammation 
[246]. Celecoxib, a COX-2 selective inhibitor, protects 
neurons by inhibiting oxidative stress and in this way 
mediates its antidepressant effects [247].

Antibiotics also have potential antidepressant effects, 
with a notable decrease in Hamilton Depression Scale 
scores in patients with MDD who receive adjunctive 
treatment with minocycline [248]. Minocycline attenu-
ates the effects of neuroinflammation on MDD by 
decreasing the expression of proinflammatory cytokines 
and reducing the release of neuroactive kynurenine 
metabolites [249].

Inhibitors targeting specific cytokines have also gar-
nered attention. Monoclonal antibodies to TNF-α (e.g. 
infliximab), IL-6 receptor antagonists (e.g. tocilizumab), 
and antibodies to IL-4α receptors (e.g. dupilumab) have 
demonstrated direct and indirect ameliorative effects on 
depressive symptoms [250–253]. Additional clinical stud-
ies have noted positive effects on depressive symptoms 
with IL-12/23 antagonists [254, 255]. These cytokine 
antagonists inhibit inflammatory signaling by block-
ing the binding of cytokines to their receptors, reducing 
inflammation levels throughout the periphery and brain, 
and contributing to the recovery of neurological func-
tion. Furthermore, given IL-10’s anti-inflammatory role 
in MDD, reducing IDO expression through IL-10-depen-
dent pathways promote the recovery of MDD [256].

Targeting microglia, particularly over the P2X7-NLRP3 
axis, is currently a focus of drug development for neuro-
logical disorders, P2X7 activation promotes IL-6 release, 
stimulates free radical production, phospholipase activa-
tion, and apoptosis. In the adaptive immune response, 
P2X7 stimulation is involved in T-cell activation, and 
ATP-P2X7 signaling reduces the inhibitory activity and 
viability of regulatory T-cells (Treg cells) and favors T-cell 
polarization to T-helper cells (TH17 cells), disrupting 
the balance between the two and leading to MDD [257]. 
Brain-permeable P2X7 antagonists can reverse stress-
induced depressive-like behaviors [258].

Research indicates that the efficacy of antidepres-
sants varies by gender. Males generally respond better to 
TCAs, whereas females exhibit greater responsiveness to 
SSRIs [259]. This difference may result from estrogen’s 
ability to rapidly shorten the onset time of SSRIs by acti-
vating GPER receptors [260]. Additionally, estradiol (E2) 
enhances the mRNA levels of 5-HT2A and upregulates 
serotonin transporter expression, contributing to an anti-
depressant effect [261].

Studies also reveal that females are more sensitive to 
ketamine dosages, resulting in a more pronounced anti-
depressant response [262]. Estrogen increases BDNF 
mRNA and protein levels in the hippocampus, cerebral 
cortex, and spinal cord [263]. Combined with ovarian 
hormones’ role in facilitating BDNF signaling, BDNF 
may mediate the heightened sensitivity to ketamine 
in females. However, a study on Sprague-Dawley rats 
showed that ketamine was effective in adult males but 
ineffective in females [264]. The sexual dimorphism in 
antidepressant drugs and their mechanisms requires fur-
ther exploration.

Hormones also significantly influence drug efficacy. 
Progesterone and estradiol are key estrogens that play 
vital roles in cellular proliferation, synaptic structure 
and function, and neuroprotection. They modulate 
neural activity through various receptors and impact 
neurotransmitter systems [265]. Additionally, gender 
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differences in antidepressant response are linked to varia-
tions in CYP enzymes and the hypothalamic-pituitary-
adrenal (HPA) axis [266, 267]. The exploration of gender 
differences provides critical insights into the use of anti-
depressants, underscoring the importance of considering 
patient gender in treatment planning.

Non-pharmacological approaches
Diets that modulate the immune response and inflamma-
tory state are gaining attention in the treatment of MDD. 
Anti-inflammatory diets, such as the Mediterranean 
diet and the Dietary Approaches to Stop Hypertension 
(DASH) diet, which is rich in omega-3 polyunsaturated 
fatty acids, antioxidants, and multivitamins, can reduce 
systemic levels of inflammation and indirectly amelio-
rate depressive symptoms [268, 269]. By modulating the 
intestinal microbiota, these diet can increase the produc-
tion of anti-inflammatory short-chain fatty acids [270, 
271]. Additionally, certain prebiotics can promote the 
growth of beneficial bacteria and maintain neurological 
stability [272].

Physical activity also provides an important non-
pharmacological approach in the management of MDD. 
Exercise has been demonstrated to contribute to immune 
system maintenance and gut health, reducing the nega-
tive impact of inflammation on the brain by enhancing 
immune cell function, lowering cortisol levels [273], pro-
moting neurotrophic factor production [274], and opti-
mizing gut microbial diversity.

Psychological interventions serve as an important 
intervention method of MDD. Interpersonal Psycho-
therapy (IPT) has been shown to have a significant effect 
on improving social functioning and reducing depres-
sive symptoms and anxiety [275]. And in children and 
adolescents with MDD, family therapy may be slightly 
more effective than individual psychotherapy [276]. Cog-
nitive behavioral therapy (CBT), helps alleviate depres-
sive symptoms by altering cognitive interpretations of 
stressful events, decreasing the stress response, and con-
sequently reducing the release of inflammatory media-
tors. CBT also increases the expression of nerve growth 
factors, such as BDNF, and promotes neural repair and 
neuroplasticity [277, 278]. Moreover, CBT encourages 
physical activity, which complemented with exercise 
therapy, lowers inflammation levels and promotes mood 
recovery [279–282].

Combining pharmacological and non-pharmacolog-
ical therapies provides a more comprehensive and per-
sonalized approach to MDD treatment. This integrative 
approach targets the immune system while adjusting 
the individual’s physiological and psychological state. 
Such approach considers the multidimensional effects of 
immunity, neurotransmitters, stress response, and life-
style, potentially improving treatment efficacy, reduce 

side effects, and promote long-term recovery for patients.
These therapeutic interventions are illustrated in Fig. 2.

Conclusion and future directions
The complex interplay between peripheral and central 
immune mechanisms has emerged as a fundamental 
pathway in the pathogenesis of major depressive disorder. 
This review has synthesized current evidence demon-
strating how peripheral and central immune mechanisms 
converge to influence MDD pathogenesis. Multiple 
pathological processes, including BBB dysfunction, neu-
roinflammation, and cytokine dysregulation, contribute 
independently and synergistically to the development 
and progression of depressive symptoms. While these 
findings have significantly advanced our understanding, 
several critical challenges remain to be addressed.

The development of targeted immune-modulating 
therapies, particularly those addressing BBB dysfunc-
tion and neuroinflammation, represents an exciting 
therapeutic frontier. However, the current evidence for 
neuroinflammation in MDD, while compelling, has nota-
ble limitations. Most studies are correlational rather than 
causal, and animal models may not fully replicate human 
complexity. Longitudinal studies tracking inflamma-
tory markers alongside clinical progression could better 
establish causation, and novel techniques like single-cell 
sequencing may help unravel cell-type specific contribu-
tions to neuroinflammation. By focusing on translational 
research with clinical applications, we can work toward 
more effective, personalized treatments for MDD based 
on immune mechanisms.

The current understanding of immune mechanisms 
in MDD has opened new avenues for therapeutic inter-
vention and biomarker development, and the success 
of adoptive cell therapy (such as CAR-T cell therapy) in 
cancer treatment has inspired scientists to apply similar 
strategies to immune-related diseases, including MDD. 
However, there is still relatively little research in this area. 
Future research is still needed for developing more effec-
tive, personalized treatment strategies for this devastat-
ing disorder.
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