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Abstract
Ependymal cells are arranged along the inner surfaces of the ventricles and the central canal of the spinal 
cord, providing anatomical, physiological and immunological barriers that maintain cerebrospinal fluid (CSF) 
homeostasis. Based on this, studies have found that alterations in gene expression, cell junctions, cytokine secretion 
and metabolic disturbances can lead to dysfunction of ependymal cells, thereby participating in the onset and 
progression of central nervous system (CNS) infections. Additionally, ependymal cells can exhibit proliferative 
and regenerative potential as well as secretory functions during CNS injury, contributing to neuroprotection 
and post-injury recovery. Currently, studies on ependymal cell primarily focus on the basic investigations of 
their morphology, function and gene expression; however, there is a notable lack of clinical translational studies 
examining the molecular mechanisms by which ependymal cells are involved in disease onset and progression. 
This limits our understanding of ependymal cells in CNS infections and the development of therapeutic 
applications. Therefore, this review will discuss the molecular mechanism underlying the involvement of ependymal 
cells in CNS infections, and explore their potential for application in clinical treatment modalities.

Key points
	• Ependymal cells play an important role in the maintenance of CSF homeostasis and CNS health by forming 

physical and immune barriers against pathogen invasion.
	• PPRs signaling pathways, cilia and intercellular junctions, cytokine secretion or senescence of ependymal cells 

can lead to dysfunction, which in turn is involved in the onset and progression of CNS infection.
	• We propose potential therapeutic applications including gene transfer and novel biomarkers.
	• Studies of ependymal cells have provided new ideas for pathophysiology and treatment, but further research 

is needed to fully understand their role in CNS infection and evaluate therapeutic effect.
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Introduction
Ependymal cell
Ependymal cells are glial cells that form an epithelium 
lining the inner surfaces of the brain ventricles and the 
central canal of the spinal cord [1, 2]. They are located at 
the interface between cerebrospinal fluid (CSF) and brain 
parenchyma, playing a crucial role in the formation of the 
brain-CSF barrier [3]. They provide significant mechani-
cal support and sensory functions, facilitating the trans-
port of substances between CSF and parenchyma to 
maintain the composition of CSF while isolating damag-
ing agents to protect the central nervous system (CNS). 
The apical ciliary clusters of ependymal cells beat in a 
coordinated manner to regulate the unidirectional flow 
of CSF. Moreover, ependymal cells can secret cytokines 
and other signaling molecules, providing nutritional 
support and contributing to immune and metabolic 
regulation. Reports indicate that ependymal cells can be 
activated under pathological conditions, such as spinal 
cord injury (SCI), exhibiting robust proliferative capacity 
and multipotent responses to injury, positioning them as 
potential endogenous stem cells [4] (See Fig 1). The het-
erogeneity of ependymal cells has been widely explored. 
Recent studies have identified different subgroups of 
ependymal cells according to their different localizations 
and morphologies, including multiciliated E1, biciliated 
E2 and uniciliated E3 [5, 6]. They possess distinct molec-
ular markers and regeneration characteristics, playing 
varying roles in neurodevelopment, homeostasis main-
tenance, and damage response [7]. Among them, the E1 
is the major subgroup, playing a key role in the brain 

homeostasis. In this review, we put emphasis on the mul-
ticiliated ependymal cells.

Ependymal cell and CNS diseases
Due to the critical role of ependyma integrity and CSF 
homeostasis in regulating normal CNS activity, ependy-
mal cells are implicated in the pathogenesis of various 
CNS disorders [6] (See Fig 1). Numerous studies have 
focused on the relationship between ependymal cells 
and hydrocephalus, identifying mechanisms such as cili-
ary dysfunction and loss of ependymal integrity caused 
by impaired cell junctions, both of which are considered 
to be the mechanisms of hydrocephalus [8, 9]. In addi-
tion, ependymal cell abnormality is found in the early 
pathological stages of neurotrauma. For example, after 
traumatic brain injury (TBI), there is a dramatic reduc-
tion in ependymal cilia, as well as DNA damage in cells, 
potentially affecting the barrier function and disrupting 
CSF composition, circulation, and waste clearance [10]. 
Dysfunction of ependymal cells may heighten the risk 
of further neuropathology and disease, particularly neu-
rodegenerative disorders. Evidence of ependymal dys-
function has been noted in several neurodegenerative 
diseases, including multiple sclerosis (MS), Alzheimer’s 
disease (AD) and other neurodegenerative diseases. In 
autoimmune demyelinating diseases, after exposure 
to autoantibodies, such as IgG against Aquaporin-4 
and GlialCAM, it can induce changes in the substance 
expression and morphology of ependymal cells and lead 
to lesions in the periventricular area [11, 12]. Though 
whether ependymal cells could serve as a potential origin 

Fig. 1  The structure, location and roles of ependymal cells Multiciliated ependymal cells are located at the interface between CSF and CNS paren-
chyma, participating in the brain-CSF barrier formation. Their cilia beat in a coordinated manner to regulate the unidirectional flow of CSF. There exist tight 
junctions, gap junctions, and adhesion junctions between cells, which maintain ependymal integrity and permeability and isolate harmful substances to 
protect the CNS. Ependymal cells are involved in the onset and progression of many CNS diseases, including neurotrauma, neurodegenerative diseases, 
cerebrovascular diseases, and CNS infections
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of these diseases remains to be further explored [13]. 
However, ependymal cells also participate in the restric-
tive repair and prognosis. In the later stages of SCI, epen-
dymal cells can actively promote neurological recovery 
by activating proliferation and differentiation, as well as 
providing neurotrophic support and limiting secondary 
injury [14]. The CNS can be infected by various patho-
gens, including viruses, bacteria, fungi, and parasites, 
which invade neural tissue, meninges, and vasculature, 
resulting in CNS infections with diverse pathological 
changes. Among them, ependymal cells are also suscep-
tible to infections. It is worth mentioning that Stratton, 
J. A. and her team have carried out detailed and com-
prehensive work on ependymal cells. They also wrote a 
review to update the biology and pathology of ependymal 
cells in the adult brain, introducing the role of multicili-
ated ependymal cells in homeostasis and in response to 
CNS pathologies and aging [2].

While the significance of ependymal cells in CNS dis-
orders is recognized, little is known about their molecu-
lar mechanisms in disease progression, particularly in 
infectious diseases. Recently, several reviews and articles 
have discussed and hypothesized about ependymal cells 
in the pathogenesis of SCI [15, 16], AD [13, 17], hydro-
cephalus [3, 18], autoimmunity [11, 12] and neurodegen-
erative diseases [13, 19]. Nevertheless, their involvement 
in CNS infection has received scant attention. In Strat-
ton, J. A.‘s latest review, a summary table regarding recent 
studies on ependymal cells in infections was presented 
in Supplementary Table 4 [2]. This review describes the 
mechanism by which ependymal cells are involved in 
CNS infections and their potential application in clini-
cal practice. These findings will help clarify the role of 
ependymal cells in CNS infections and may encourage 
targeted therapies for CNS diseases based on ependymal 
cell function (See Fig 1).

Ependymal dysfunction in infections
Ependymal cells can be invaded or affected by various 
pathogens. Receptors for coxsackie-adenovirus, measles 
virus [20] and the poliovirus [21] are present on epen-
dymal cell surface. Nectin, expressed on the ependymal 
cells, functions not only as an adhesion molecule but also 
as an entry receptor for some viruses [22, 23]. For the 
newly emerging pathogen SARS-CoV-2, low-level expres-
sion of both angiotensin-converting enzyme-2 (ACE2) 
and transmembrane protease, serine 2 (TMPRSS2), nec-
essary for viral entry, has been observed in human cho-
roid plexus (CP) and ependymal cells [24, 25]. There are 
plaques that are immunopositive for the prion protein 
(PrP) in ependymal cells and around the base of adja-
cent vessels [26–28] following prion infection. Interac-
tions between cells and prions lead to the formation and 
production of scrapie PrP amyloid filaments, along with 

the synthesis of PrP mRNA in ependymal cells [29], sug-
gesting that ependymal cells may serve as one of the 
targets of prions [30]. HSV-1 infection shows a tropism 
for the ependyma, resulting in a loss of ciliated ependy-
mal cells, lateral ventricular enlargement, and increased 
intracranial pressure during acute infection [31]. How-
ever, during latency, the expression of HSV-1 lytic genes 
is detected in the ependyma, correlating with a sustained 
dysfunctional response from resident T cells [32]. Epen-
dymal cell dysfunction after infection is associated with 
various pathological changes in the CNS.

Ependymal dysfunction and post-infectious hydrocephalus
Ependymal ciliary dysfunction, inflammation, and 
increased intercellular space may contribute to hydro-
cephalus. In malaria, ependymal cells display vary-
ing degrees of damage, including ciliary thickening or 
loss, increased intercellular space, and dissociation of 
the ependymal layer. These alterations may enhance the 
permeability of the CSF-brain barrier [33]. In a model 
of Streptococcus pneumoniae meningitis, ependymal 
cells exhibit structural and functional ciliary abnormali-
ties [34]. Zika virus’s NS5 protein causes severe ciliopa-
thy through interacting with cilia in ependymal cells, 
which may be associated with microcephaly [35, 36]. 
Ciliary dysfunction may contribute to the neuropatho-
logical changes following CNS infections, especially 
hydrocephalus. In neurocysticercosis (NCC) caused by 
the larval form of Taenia Solium, ependymal and arach-
noidal inflammation, along with the obstruction of the 
CSF pathway can lead to hydrocephalus, the most com-
mon cause of hydrocephalus in adults in endemic regions 
[37] (See Fig 2).

In fact, post-infectious hydrocephalus is the lead-
ing cause of hydrocephalus in children worldwide, and 
hydrocephalus resulting from tuberculous meningitis 
(TBM) imposes a considerable burden in regions with 
a high tuberculosis prevalence [38]. Different reovirus 
serotypes mediate infectious tropism and pathogenesis: 
serotype 1 infects ependymal cells, leading to hydro-
cephalus, while serotype 3 targets neurons, resulting in 
encephalitis [39, 40]. This suggests that ependymal cell 
injury during infection may be a key pathophysiologi-
cal mechanism underlying post-infectious hydrocepha-
lus [41]. On the one hand, in the acute phase, ongoing 
damage to choroidal epithelial cells, ependymal cells, 
and brain tissue coupled with inflammation, may impair 
CSF resorption. On the other hand, in the chronic phase, 
ependymal scarring leads to intraventricular obstruc-
tion. In both instances, they account for the pathophysi-
ologic mechanism of post-infectious hydrocephalus [38, 
41]. In addition, microglia are also involved in the dam-
age and death of ependymal cells. Intracerebroventricu-
lar (ICV) injection of recombinant HIV-1 tat protein can 
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lead to ependymal damage and activate subependymal 
microglia. These microglia phagocytose ependymal frag-
ments and migrate and infiltrate into the periventricu-
lar area and parenchyma, thereby causing inflammation 
[42]. VPS35 is highly expressed in ependymal cells and is 
involved in ependymal cell differentiation and ciliogene-
sis. In mice with VPS35 specifically knocked out in epen-
dymal cells, hydrocephalus is observed, accompanied by 
damaged ependymal cells and local activation of microg-
lia. After depletion, an alleviation in hydrocephalus and a 
restoration of ependymal cell homeostasis are observed 
[43].

Ependymal barrier dysfunction and pathogen invasion
Significant structural features of ependymal cells are the 
apical ciliary cluster and the tight junctions, gap junc-
tions and adhesion junctions between them [44–46]. 
Together, they maintain ependymal integrity and perme-
ability, regulate CSF circulation and ion transport, and 
form the brain-CSF barrier, which is crucial for maintain-
ing CSF homeostasis. In CNS infection, ependymal cells 
present with ciliary loss, decreased beating frequency, 
and ultrastructural disruption, making neurons more 
likely susceptible to bacterial toxins [34], accompanied by 

hydrocephalus. Some pathogens, such as cryptococcus, 
enter the CNS through the blood-CSF-brain pathway. 
Following intracerebral inoculation, the virus initially 
spreads in the CSF and extensively infects ependymal 
cells before entering the brain parenchyma to infect neu-
rons and glial cells [47, 48], thereby establishing a path-
way for encephalitis development [49]. Cytomegalovirus 
(CMV) is the most common opportunistic viral pathogen 
in immunocompromised adults. It preferentially affects 
ependymal cells, and then expands to the parenchyma 
[50]. Additionally, SARS-CoV-2 can induce neurological 
symptoms and complications, and its staining is observed 
in CP and ependymal cells [51]. SARS-CoV-2 exhibits 
tropism for CP epithelial cells, accompanied by increased 
cell syncytia and increased cell death. And RNA-seq 
reveals heightened inflammatory cellular responses and 
downregulation of genes related to transport, cilia, and 
cell junctions, resulting in impaired barrier and secretory 
functions [52, 53]. And as for neurocysticercosis (NCC) 
infection, Alvarez proposes a fourth route from blood 
to the CSF through the disrupted ependymal layer via 
internal leptomeninges vessels [54]. Notable structural 
changes and loss of junction proteins occur in ependymal 
cells adjacent to the internal leptomeninges, correlating 

Fig. 2  Hydrocephalus and ependymal cell dysfunction Hydrocephalus often occurs after infection, with structural and functional abnormalities in ep-
endymal cells: (a) a decreased ciliary beating frequency; (b) an increased intercellular space, with junctions changing or disappearing; (c) cilia thickening 
or loss; (d) ependymal denudation. Besides, leukocytes express active MMPs that allow them to cross the ependymal barrier and infiltrate the ventricles. 
MMPs: matrix metalloproteinases
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with active matrix metalloproteinases (MMPs) expressed 
by leukocytes, which facilitate their infiltration into the 
ventricles [54–56]. In malaria, the observed intercellular 
dissociation of ependymal cells appears to enhance the 
paracellular permeability of the CSF-brain barrier, mak-
ing inflammatory mediators and toxins to enter the brain 
and cause injury [33]. In early bacteremia of tuberculo-
sis, Mycobacterium tuberculosis (Mtb) deposits in the 
subpial or subependymal region of the brain and remains 
dormant for a long time. When the lesion expands and 
ruptures into the ventricle or subarachnoid space [57], 
it can lead to TBM. Mtb can also cross the ependymal 
layer or CP to enter the brain parenchyma [58]. Similarly, 
pathogens can invade the blood-CSF barrier and pen-
etrate CP epithelium via the Trojan horse strategy, result-
ing in barrier breakdown and subsequent CNS infection 
[59].

In summary, ependymal cells may serve as a route 
for the entry of pathogens and inflammatory mediators 
into the brain. This occurs via the transcellular pathway 
through receptors, the paracellular pathway that disrupts 
with ependymal cell junctions, and leukocyte infiltration 
[53]. In addition to pathogens, tumors, immune cells, 
antibodies and cytokines can also access the brain paren-
chyma through the blood-CSF-brain pathway (See Fig 2).

The mechanism of ependymal cells in CNS infection
Pattern-recognition receptors are involved in inflammatory 
signaling
Intraventricular administration of lipopolysaccharide 
(LPS) induces a robust inflammatory response at the 
periventricular margin of the cerebral cortex. The inflam-
matory signaling in the brain may involve two pathways: 
local diffusion of LPS/inflammatory molecules across the 
meninges and ependyma, as well as signaling through 
cerebral blood circulation [60]. During CNS infection, 
ependymal cells at the blood-CSF barrier and CSF-brain 
barrier function as both a physical and immunological 
barrier. Pattern-recognition receptors (PPRs) on these 
cells, including Toll-like receptors (TLRs), CD14 and 
C-type lectin PRR, can recognize pathogens prior to their 
entry into the parenchyma and participate in inflamma-
tory signaling transduction.

The expression of TLRs on ependymal cells increases 
upon infection, such as TLR4, TLR7, TLR8, and TLR13. 
TLR-mediated innate immunity plays a crucial role in 
recognizing pathogens such as bacteria, viruses, fungi 
and parasites, and facilitates interactions between 
immune cells and CNS cells [61–63]. The downstream 
of signaling of TLR4 involves the signaling molecules 
myeloid differentiation factor 88 (MyD88), nuclear factor 
kappa B (NF-κB) and inflammatory factors interleukin-1β 
(IL-1β) and tumor necrosis factor α (TNF-α). These fac-
tors not only induce the release of inflammatory factors, 

and apoptosis of phagocytic cells but also mediate persis-
tent brain inflammation and neurological tissue damage 
during endotoxemia [60, 64]. Additionally, the ependyma 
also expresses the scavenger receptor CD14, which inter-
acts with TLR4 to promote the phagocytosis of apop-
totic neutrophils in CSF, thereby reducing the severity of 
inflammation [65].

In addition, unmethylated CpG motifs in bacteria are 
highly immunogenic and activate TLR9 signaling, leading 
to damage and subsequent activation of periventricular 
microglia, ependymal destruction and reactive astrocyte 
proliferation. This cascade may result in impaired neu-
rological function, neuroinflammation, and even neu-
rodegeneration [66], suggesting a potential association 
among infection, innate immunity and neurodegenera-
tion. Pituitary adenylate cyclase-activating polypeptide 
(PACAP) can inhibit LPS-induced TLR4 signaling and its 
downstream responses, reducing the secondary inflam-
matory response and indicating a neuroprotective role 
[67]. Meanwhile, the regulation of TLRs can help main-
tain balance within the innate immune system, prevent-
ing excessive antimicrobial inflammatory response that 
could lead to secondary brain damage. TLRs may serve 
not only as targets for immunomodulation in CNS infec-
tion, but also for improving the prognosis of nerve injury 
and neurodegenerative conditions. Further research on 
TLRs is essential to elucidate how infections and innate 
immunity influence the onset and progression of neuro-
degenerative disorders.

Indeed, CNS infection can disrupt ependymal ciliary 
status and motility through the TLR/MyD88/NF-κB sig-
naling pathway, contributing to acquired hydrocephalus 
[68]. In the presence of inflammatory factors and che-
mokines such as TNF-α and IL-1, NF-κB activation and 
pro-inflammatory mediators lead to macrophage recruit-
ment and inhibition of ciliogenesis [69]. Furthermore, the 
NF-κB-independent inhibitor of kappa B kinase 2 (IKK2) 
stabilizes Foxj1, whereas some viruses such as HSV-1 and 
growth factors can inhibit IKK, resulting in Foxj1 deg-
radation, dedifferentiation of ependymal cells, and pro-
gression to hydrocephalus [70]. On the other hand, cilia 
length and function may regulate TLR4-mediated NF-κB 
signaling activation and pro-inflammatory cytokine 
expression [71], suggesting that the interactions between 
the NF-κB signaling pathway and cilia in neuroinflam-
mation and innate immune responses warrant further 
investigation. As mentioned earlier, ependymal cilia are 
crucial for maintaining CSF homeostasis and undergo 
pathological changes during infection. Ciliogenetic genes 
are highly expressed in ependymal cells and are tightly 
regulated by a complex network of transcription factors, 
with Foxj1 serving as the central transcription factor of 
ciliogenesis in the network [72] (See Fig 3). Additionally, 
there is a strong connection between ciliogenesis and cell 
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cycle regulation. After SCI, the expression of cilia-related 
genes in ependymal cells may be suppressed due to 
increased cell proliferation and downregulation of Foxj1 
expression [72]. The axoneme, the fundamental structure 
of cilia, comprises microtubules and ATP-driven dynein 
motors [73], enabling cilia to beat synchronously in a 
rhythmic, wave-like manner through gap junctions or 
innervation. However, structural and functional abnor-
malities within the cilia may impair intraciliary transport, 
ciliary maintenance, material transport, and CSF regula-
tion [9], leading to ventricular enlargement and hydro-
cephalus. Mutations or defects in cilia-related genes 
and proteins can result in compromised ciliary motility 
and failure of mucosal clearance [68], resulting in pri-
mary ciliary dyskinesia (PCD) [74]. PCD is a hereditary 
and clinically heterogeneous syndrome characterized 
by recurrent respiratory infections, infertility and early 
postnatal hydrocephalus [75]. At least 40 genes have been 
found to be associated with PCD [76–80]. Consequently, 

hydrocephalus can arise from the production of structur-
ally abnormal cilia that cause dyskinesia and disrupt nor-
mal CSF flow.

Inflammatory cytokines and neurotrophic support
Ependymal cells are also involved in immune regulation 
and inflammatory responses through cytokines. Inter-
feron (IFN) is a cytokine involved in antiviral, antitumor 
and immunomodulation activities, particularly in viral 
encephalitis and autoimmune diseases within the CNS. 
Following viral infection, ependymal cells produce IFN-
α/β, which strongly inhibits viral transmission [81, 82]. 
Additionally, IFN-γ induces ependymal cells to express 
chemokines that recruit T cells into the CNS synergiz-
ing with peripheral infection stimulation [83]. Loss of 
myelin is a prominent pathological hallmark of MS and 
viral infection in humans. Defects in IFN-γ signaling are 
linked to enhanced oligodendrocyte tropism and delayed 
virus clearance but do not significantly impact the extent 

Fig. 3  Pattern recognition receptors on ependymal cells are involved in inflammatory signaling The TLR4/MyD88/NF-κB signaling pathway in-
duces the release of inflammatory cytokines like IL-1β and TNF-α, while promoting phagocytic apoptosis. This mediates persistent brain inflammation 
and neurological tissue damage. Activation of NF-κB and pro-inflammatory mediators facilitates macrophage recruitment and inhibits ependymal cilio-
genesis. NF-κB-independent IKK2 can stabilize Foxj1, while some viruses such as HSV-1 and growth factors can inhibit IKK, which in turn strongly induces 
Foxj1 degradation and subsequently leads to hydrocephalus. Besides, unmethylated CpG in bacteria relies on TLR9 signaling to mediate damage and 
induce ependymal destruction. LPS: lipopolysaccharide; TLR: toll-like receptor; PACAP: Pituitary adenylate cyclase-activating polypeptide; NF-κB: nuclear 
factor kappa B; IKK: inhibitor of kappa B kinase
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or distribution of demyelination [84, 85]. Interferon reg-
ulatory factor 3 (IRF3) is selectively expressed in brain 
cells, with particularly strong expression in ependymal 
cells [86]. Upon activation, IRF3 induces IFN-β produc-
tion and antiviral immunity, effectively inhibiting viral 
replication [86]. For example, during CNS infection with 
coronaviruses, the interplay between IFN I-related innate 
immunity and the cleavage of the viral spike glycopro-
tein by host protease contribute to reduced neuroviru-
lence and control of neural invasion [87], highlighting 
two potential antiviral targets. In the absence of func-
tional IFN I, the Semliki Forest virus exhibits rapid and 
widespread infection with tropism, affecting ependymal 
cells, meningeal cells, and oligodendrocytes, resulting in 
viral encephalitis. JC polyomavirus (JCPyV) infection can 
also cause encephalitis and induce progressive multifo-
cal leukoencephalopathy [82]. In a CNS infection model 
with Mouse polyomavirus (MuPyV) to mimic JCPyV 
infection, STAT1 is involved in IFN receptor signaling 
and collaborates with CD8 T cells to alleviate MuPyV 
encephalopathy and control viral replication [88]. Addi-
tionally, by inducing acute neuroinflammation through 
the application of LPS and IFN-γ both in vivo and in 
vitro, ependymal cells can be triggered to exhibit reactive 
characteristics, manifested as the increased expression 
of GFAP and STAT1 and closely related to some genes 
associated with cellular reorganization and immune 
regulation. The same applies to chronic neuroinflamma-
tion [89]. Macrophage migration inhibitory factor (MIF), 
present in ependymal cells and choroidal epithelial cells 
[90, 91], serves as a key upstream mediator of host innate 
and adaptive immunity, functioning as immunomodu-
lators and pro-inflammatory cytokines that facilitate 
pathogen clearance and enhance host defenses [92].

The TLR pathway has been established as a cru-
cial mediator of inflammatory signal recognition, with 
TNF-α and IL-1-mediated acute inflammatory response 
playing important roles in the initiation of inflammatory 
response to CNS infection. Following both HSV viral 
encephalitis and bacterial meningitis, induction of TNF-α 
was observed in the ependyma, alongside elevated levels 
of pro-inflammatory factors and chemokines in the CSF, 
such as IL-1β, IL-6, CXCL1, and CXCL10 [31, 93, 94]. 
In infant rats infected with Streptococcus pneumoniae, 
ependymal cells and CP express cathelin-related antimi-
crobial peptide, which are induced by IL-1β and TNF. 
Furthermore, the expression of the antimicrobial peptide 
LL-37 has also been detected in the CSF of patients with 
bacterial meningitis [95].

Moreover, ependymal cells likely consistently express 
receptors for IL-1 and TNF-α. In acute aseptic neuroin-
flammation induced by neuraminidase (NA) injection, 
activated microglia are contribute to ependymal injury in 
the ventricles, with IL-1β likely serving as the mediator 

[96]. This mechanism may explain how neurological 
infections, such as those caused by Streptococcus pneu-
moniae, lead to ependymal cell death and hydrocephalus. 
However, it is also evident that NA can partially induce 
ependymal damage in vitro, indicating that its role should 
not be discounted. Additionally, IL-1 signaling is directly 
or indirectly involved in the changes of the blood-CSF 
barrier. High levels of IL-1β in CP enhance the activity of 
MMPs, which degrade substrates and junction proteins, 
increasing barrier permeability and inducing edema. This 
process also facilitates the release of chemokines and leu-
kocyte trafficking [97]. Activating transcription factor 3 
(ATF3) acts as a negative regulatory transcription factor 
in TLR pathways [98], thereby reducing the expression 
of genes encoding inflammatory cytokines such as IL-1β, 
IFN-γ and TNF-α during infection and injury [99, 100]. 
Quiescent ependymal cells express ATF3; while activated 
in vitro or after SCI, ATF3 expression is upregulated, 
accompanied by the migration of ependymal cells [101]. 
Inhibiting ATF3 suppresses the migration of ependymal 
cells and upregulates the expression of inflammatory fac-
tors. These data suggest that ATF3 may contribute to the 
survival of motor neurons and the maintenance of axo-
nal connections in the zebrafish SCI model by regulating 
the inflammatory response. ATF3 is proposed as a novel 
dynamic marker of ependymal derived stem/progenitor 
cell (epSPC) [101], and the upregulation of ATF3 after 
SCI acts as a negative regulator of proinflammatory cyto-
kines, promoting motor recovery and axonal regenera-
tion [102].

Interestingly, ependymal cells can also express immu-
nomodulatory proteins, including GPI-anchored mol-
ecules and immunoglobulin superfamily molecules, to 
regulate excessive immune responses in both health and 
disease, thereby modulating innate immune responses 
in the CNS [103]. In meningitis, there is upregulation of 
complement activators in ependymal cells and choroidal 
epithelial cells, such as strong CD46 and CD35 staining, 
which helps balance anti-inflammatory and protective 
responses. This expression renders ependymal cells resis-
tant to complement-mediated attacks during strong acti-
vation of the complement pathway in the infected CNS, 
thereby mitigating innate complement-mediated inflam-
matory damage. Notably, some viruses can exploit this 
mechanism to gain immune privilege [104].

It is worth noting that ependymal cells can also secrete 
neurotrophic factors that promote neurogenesis and 
angiogenesis, regulate local inflammation, and protect 
neurons from death. During the recovery from TBI and 
cerebrovascular disease, the CP/ependyma upregu-
late the expression of growth factors and neurotrophic 
factors, including brain-derived neurotrophic fac-
tor (BDNF), nerve growth factor, vascular endothelial 
growth factor (VEGF), transforming growth factor and 
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so on. These factors are released into CSF through endo-
crine-like mechanisms and then transmitted to injured 
areas [105], potentially activating similar signaling path-
ways that protect neurons and improve the neurogenesis 
niche [106]. This process is modulated by inflammatory 
cytokines.

Ependymal cells and changes in innate immunity-related 
genes
Changes in the expression of innate immunity-related 
genes have been observed in ependymal cells. Exposure 
to LPS significantly increases the expression of inflam-
mation-related genes [65]. In ependymal cells from NCC-
infected mice, genes associated with the innate immune 
response, antigen presentation, and leukocyte infiltration 
are upregulated, including MHC-II and various chemo-
kines [56]. Meanwhile, a recent study has reported sig-
nificant transcriptional alterations of ependymal cells 
in a Bacillus Calmette-Guerin-induced model of TBM, 
revealing a significant enrichment of genes related to 
metal ion and protein transport, as well as antigen pre-
sentation and processing, as detected by single-cell RNA 
sequencing. Notably, a reduced expression of the FERM 
structural domain 4 A (Frmd4a) may correlate with clini-
cal symptoms of hydrocephalus and neurodegeneration 
[107]. Additionally, another study has identified miRNAs 
that are associated with changes in gene expression, par-
ticularly targeted mRNAs focusing on ion and protein 
transport. MiR-21a-3p is one of miRNAs involved in the 
miRNA-mRNA network of ependymal cells and neurons 
[108], which targets several components in the network 
that work in the innate immune response. Further-
more, it has been shown that miR-21a-3p targets IFN-γ 
mRNA, negatively regulating anti-mycobacterial immune 
responses [109]. These evidences suggest that ependymal 

cells play a role in innate immunity and material trans-
port in TBM.

Potential applications implicating ependymal cells 
in clinical treatment
Gene transfer in ependymal cells
Due to the blood-brain barrier, the efficacy of some 
drugs targeting the CNS is limited. As brain-CSF bar-
rier, ependymal cells are considered as promising targets 
for enzyme replacement therapies to improve neurologi-
cal metabolic disorders and for delivering cytokines or 
drugs through ventricular, subarachnoid, and perivascu-
lar spaces. Therefore, non-replicating viral vectors carry-
ing therapeutic genes have been engineered to effectively 
infect ependymal cells, facilitating the synthesis and 
secretion of transgenic therapeutic products into CSF to 
target neurons and achieve sustained transgene expres-
sion without significant toxicity. This approach holds 
potential for treating various CNS diseases [110]. Among 
these, adeno-associated virus (AAV) vectors enable epen-
dymal-specific transduction and transgene expression 
in the CNS, making them suitable for local intracerebral 
gene therapy [111–113] (See Fig 4). Comparative studies 
have shown that AAV2/5 and AAV2/8 display remark-
able infections in the CP, while AAV2/1 infects both 
ependymal cells and cells in the CP. In contrast, lentivi-
rus vectors demonstrate low infection intensity in the CP. 
Therefore, serotype-specific AAVs 5 and 8 are promising 
tools for ICV gene delivery [112].

Batten disease is caused by a deficiency of the soluble 
lysosomal enzyme tripeptidyl peptidase 1 (TPP1) due 
to mutations in the TPP1 gene. Transduction of recom-
binant AVVs expressing the TPP1 gene into ependymal 
cells, which have high TPP1 expression and secrete the 
enzyme into the CSF, has been shown to halt disease 

Fig. 4  Gene transfer application in ependymal cell Design non-replicating viral vectors containing therapeutic genes. These vectors are injected into 
CSF through lumbar puncture. They effectively infect ependymal cells for long-term therapeutic gene expression. The resulting products are secreted into 
CSF, providing potential treatments for neurodegenerative diseases and metabolic disorders. AAVs: adeno-associated virus
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progression and rectify neuropathological features in 
TPP1-deficient dogs [114]. Additionally, the feasibil-
ity of ICV injection of self-complementary (sc) AAV to 
treat metachromatic leukodystrophy (MLD), caused by 
functional deficiency in human arylsulfatase A (hASA), 
has been reported. However, controlling the immune 
response to prevent antibody production remains a chal-
lenge for long-term therapeutic application [115, 116]. 
Beyond enzyme replacement therapy, AAV-mediated 
gene therapy can be applied for the delivery of cytokines 
and neurotrophic factors. For example, AAV4-medi-
ated expression of insulin-like growth factor-1 (IGF-1)/
VEGF in the ependymal lining, CP and central canal of 
the spinal cord, significantly delays exercise decline and 
extends survival in amyotrophic lateral sclerosis (ALS) 
mice [106]. Enhancer-based HB-EGF delivery by AAV 
improves axon densities in neonatal crush SCI, suggest-
ing a potential strategy to improve spinal cord repair in 
mammals [117].

Several studies have demonstrated that intrathecal or 
intraventricular injection of AAV vectors can achieve 
extensive and prolonged, though not permanent, expres-
sion of exogenous genes in ependymal cells [118]. In 
addition to the effective and stable sustained secretion 
[115, 119], this approach facilitates high-level and wide 
delivery in the CNS, showing noteworthy benefits for 
aging and several diseases. Furthermore, the transduc-
tion of cytokine genes can achieve high levels in the CNS 
without affecting the peripheral immune system [120]. 
Recently, Carrell and his colleagues have identified a 
promoter for ependyma-derived transgene expression, 
derived from the VWA3A gene, demonstrating its func-
tional utility in diseases and aging, and its cross-species 
function in both mice and rhesus macaques. This strategy 
enhances safety and continuity while leading to higher 
protein secretion for better therapeutic applications 
[121].

Given the accessibility of the ventricles, gene transduc-
tion therapy through the ependymal pathway using viral 
infection presents a promising alternative for treating 
neurodegenerative and neuropathic metabolic diseases. 
Notably, ependymal cells are susceptible to viral infec-
tions. Currently, lysosomal viruses that selectively target 
cancer cells require thorough evaluation for CNS safety 
and their potential to infect and damage ependymal cells 
[122, 123]. The sigma 1 sequence of echoviruses deter-
mines the tropism for infecting specific cells, suggesting 
a direction for rational design and improvement [39, 40]. 
However, current research still focuses on in vitro experi-
ments and animal experiments, and has not yet obtained 
sufficient data to support for clinical application. Thus, 
its safety and feasibility need to be carefully evaluated by 
more studies.

Ependymal cells and novel biomarkers
Ependymal cells play crucial barrier and secretory roles 
in maintaining CSF composition and homeostasis, while 
abnormalities in CSF often reflect CNS lesions or dis-
eases. Evaluation of CSF can identify immune cells, 
tumor cells, or microorganisms indicative of disease 
spread in CSF, as well as biomarkers therein that reflect 
parenchymal changes [124]. However, due to the tem-
poral and spatial variation of CSF parameters, definitive 
diagnosis of CNS infection using routine clinical chem-
istry or cytology parameters remains challenging. It still 
relies on identifying causative pathogens by culture, anti-
gen detection or molecular methods such as polymerase 
chain reaction (PCR) and next-generation sequencing 
(NGS) [125]. Nevertheless, recent advances in novel bio-
markers and molecular methods could open new ways 
for future definitive diagnosis of CNS infections and dis-
ease evaluation.

Surfactant proteins (SP) are crucial for regulating CSF 
flow and CNS innate immunity, similar to their function 
in the lung. Surfactant proteins A, B, C and D exhibit 
immunoreactivity in the CP and in the ependymal cell 
layer of the CNS, playing a role in host defense, regulat-
ing inflammation and maintaining CSF flow. In patients 
with CNS infections, the level of both SP-A and SP-D in 
CSF is statistically significantly decreased compared to 
healthy individuals. Considering their known functions, 
they are assumed to participate in the clearance of patho-
gens and apoptotic polymorphnuclear neutrophils [126]. 
Additionally, SP-G, a recently identified surfactant pro-
tein, is produced by ependymal cells and CP and secreted 
into CSF. Its concentration significantly increases in chil-
dren with intraventricular hemorrhage or CNS infec-
tion, indicating its potential as a novel CSF biomarker for 
reflecting the CNS innate immune response and dynamic 
parameter changes of CSF components [127].

Levels of non-LTA4H-dependent cytokines in TBM 
affect the therapeutic efficacy of dexamethasone [128, 
129]. Ependymal cells secrete cytokines such as IL-1, 
TNF, and IFN into CSF following infection, which affects 
cytokine levels. A deeper understanding of the mecha-
nisms governing cytokine secretion by ependymal cells 
and how cytokines affect infection treatment, utilizing 
gene transduction in ependymal cells for expressing and 
secreting cytokines may provide new insights to guide 
clinical treatment and prognosis. Additionally, a meta-
study of CSF cytokines in TBM provides a reference set 
of cytokines as a potential adjunct to the diagnosis of 
TBM and to differentiate it from other etiologies of men-
ingitis [130].

In addition, correlation of imaging findings with bio-
markers can be used for clinical management. Ven-
tricular tuberculosis shows ependymal enhancement, 
swelling, and enhancement of CP and intraventricular 
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tuberculomas on magnetic resonance imaging (MRI) 
[131]; some patients with TBM shows enplaque-like 
ependymal granulomas associated with the ventricular 
ependymal lining on computed tomography (CT) [132]. 
Guerini proposed an empirical review of periventricu-
lar ependymal enhancement characteristics on MRI to 
reflect etiological types, such as neurological infection 
or tumor, based on the patient’s immune status, type of 
enhancement, and treatment response [133]. The release 
of brain-derived proteins such as GFAP and neurofila-
ment light chain (NFL) into the CSF indicates a disrup-
tion of the brain-CSF barrier [124]. In HIV patients with 
cryptococcal meningoencephalitis, correlating MRI 
imaging findings with NFL, which reflects axonal dam-
age, and sCD27, a predictor of intrathecal T-cell-medi-
ated inflammation, can serve as a measure of severity 
and an individualized guide to treatment. Results indi-
cate that brain MRI ependymitis is the best predictor of 
higher sCD27 levels, while choroidal plexitis is the best 
predictor of higher NFL levels [134]. Additionally, intra-
ventricular debris and stranding, and an irregular and 
echogenic ependyma in cranial sonography are highly 
indicative of ventriculitis. Sonography is also capable of 
detecting post-infectious hydrocephalus and parenchy-
mal involvement from cerebritis or early abscess [135]. 
Therefore, imaging changes in the ependyma provide an 
effective, noninvasive method for reflecting inflammatory 
biomarkers, assessing inflammatory immune activation, 
and facilitating subpopulation management, follow-up, 
and prognostic evaluation.

Summary and prospects
In CNS infections, relevant molecules and receptors, 
expressed by glial cells and neurons, are involved in 
immune recognition, defense and clearance of pathogens 
and toxic cellular components, which serve as innate 
immunity [136]. Ependymal cells constitute a vital physi-
cal and immune barrier essential for maintaining CNS 
health, with dysfunction often evident in the early stages 
of the disease. Current research on ependymal cells has 
been progressively advanced from cellular studies to 
molecular mechanisms, exploring interactions among 
signaling pathways such as TLR/MyD88/NF-κB, various 
cytokines, cilia and intercellular junctions, through in 
vivo/vitro experiments, single-cell sequencing and other 
techniques. Notably, single-cell sequencing technol-
ogy facilitates the precise identification of specific gene 
expression profiles and allows for a detailed analysis of 
underlying molecular mechanisms, paving the way for 
future investigations into the roles and mechanisms of 
ependymal cells in CNS infections.

Due to the special location of ependymal cells between 
CSF and parenchyma, they broaden our perspective for 
detecting, diagnosing and managing CNS infections, and 

provide an important manipulable target for the treat-
ment of CNS diseases. The application of viral vectors 
containing therapeutic genes for long-term expression 
in ependymal cells is promising, extending beyond CNS 
infections to encompass injuries [117], neurodegenera-
tion [106] and cerebrovascular diseases [137]. However, 
their potential application in infectious diseases, such as 
antibiotic delivery, requires further exploration. Addi-
tionally, the specificity and sensitivity of the proposed 
novel biomarkers above are currently low, and the imag-
ing findings are often based on empirical observations, 
necessitating further research and validation. Further 
studies on ependymal cells may lead to develop innova-
tive therapeutic strategies aimed at enhancing neuro-
logical recovery and functional improvement in CNS 
infections, particularly by leveraging the neural stem cell 
characteristic of ependymal cells. However, it is impor-
tant to note that ethical considerations and accessibility 
issues have limited most studies on ependymal cells to 
animal models, predominantly adult specimens, leav-
ing a gap in our understanding of age-related responses 
in ependymal cells. Therefore, the therapeutic potential 
observed in animal models should be approached with 
caution [138].

In conclusion, ependymal cells play a significant role in 
CNS infections by resisting pathogen invasion, activating 
innate immunity, participating in inflammatory signaling 
and secreting cytokines and chemokines. As infection 
progresses, pathogens penetrate the parenchyma, lead-
ing to structural alterations, dysfunction, and necrosis 
of ependymal cells, often resulting in hydrocephalus as a 
clinical manifestation. These processes offer insights for 
clinical diagnosis and treatment, particularly through the 
detection of biomarkers in CSF and producing therapeu-
tic proteins into CSF.
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