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The peri-menopause in a woman’s life: a
systemic inflammatory phase that enables
later neurodegenerative disease
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Abstract

The peri-menopause or menopausal transition—the time period that surrounds the final years of a woman’s reproductive
life—is associated with profound reproductive and hormonal changes in a woman’s body and exponentially increases a
woman’s risk of cerebral ischemia and Alzheimer’s disease. Although our understanding of the exact timeline or definition
of peri-menopause is limited, it is clear that there are two stages to the peri-menopause. These are the early menopausal
transition, where menstrual cycles are mostly regular, with relatively few interruptions, and the late transition, where
amenorrhea becomes more prolonged and lasts for at least 60 days, up to the final menstrual period. Emerging evidence
is showing that peri-menopause is pro-inflammatory and disrupts estrogen-regulated neurological systems. Estrogen is a
master regulator that functions through a network of estrogen receptors subtypes alpha (ER-α) and beta (ER-β). Estrogen
receptor-beta has been shown to regulate a key component of the innate immune response known as the
inflammasome, and it also is involved in regulation of neuronal mitochondrial function. This review will
present an overview of the menopausal transition as an inflammatory event, with associated systemic and
central nervous system inflammation, plus regulation of the innate immune response by ER-β-mediated mechanisms.
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Introduction
Aging is a complex, predetermined natural process. This
natural process of aging is associated with reproductive
senescence in most vertebrates, including mammals of
both sexes. For most of the vertebrates, including lower
mammals, life ends around the attainment of reproductive
senescence. Among lower mammals, in only five species
of whale (including killer whales) females and women
experience true menopause and survive years after meno-
pausal transition occurs. Menopause is defined as the
cessation of the menstrual cycle due to anovulation. It is
verified retrospectively after one year of amenorrhea [1].

The phenomenon of menopause brings multiple physio-
logical changes in the body, and the age at which meno-
pause occurs is increasingly recognized as an indicator for
health outcomes in later life. An average age of meno-
pause is between 45 and 51 years in the USA. The transi-
tion to menopause usually lasts about 7 years but can last
as long as 14 years. A 2012 study of stroke risk in women
found that if natural menopause occurs before 42 years of
age, then the risk of stroke doubles [2]. In general,
women’s risk of stroke and cardiac arrest increases expo-
nentially after the onset of menopause. Both stroke and
cardiac arrest cause focal and global cerebral ischemia
(CI), respectively, with a major complication of cognitive
decline [3–7]. Along with loss of ovarian functions, the
endocrine transition from the estrogen cycling of the re-
productive phase to the estrogen decline of the reproduc-
tively quiescent, post-menopausal phase is associated with
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mild cognitive dysfunction, which has been proposed to
be a prodromal phase of Alzheimer’s disease (AD) [8].
The endocrine transition is also associated with a rise in
chronic low-grade inflammation [9]. The persistent low-
grade inflammation in turn accelerates ovarian failure
[10]. A recent study suggested that the menopausal transi-
tion prompts an innate immune inflammatory response in
the female reproductive organs that propagates to the
brain, making the brain more susceptible to ischemic
damage [11]. Therefore, an understanding of the biological
mechanisms of menopause transition can better equip us
to lower the risk of CI and AD in women and develop
strategies to protect them from menopause-associated
health complications.
Understanding the biological mechanisms of meno-

pause transition or peri-menopause is complicated [12].
Systemic evaluation is difficult in humans owing to mul-
tiple life factors such as age, parity, diet, environmental
factors (e.g., toxin exposures, drug abuse), genetic back-
ground, and overlapping medical comorbidities [13].
This points to the need to conduct studies using animal
models of menopause; however, as routinely used la-
boratory rodents do not undergo menopause, we have
included some discussion on how to mimic the condi-
tion of menopause in these animals in this review.
Although our understanding of menopausal transition
induced physiological changes is limited, it is clear that a
foundational indicator of human menopause is complete
ovarian failure. Menopausal women have very low circu-
lating levels of estrogens (estrone (E1), 17β-estradiol
(E2), estriol (E3)) and progesterone but significantly ele-
vated follicle stimulating hormone (FSH) and luteinizing
hormone (LH) levels [14, 15]. It is also well known that
during the premenopausal phase of a woman’s life, es-
trogen confers natural protection against cerebrovascular
diseases. Estrogens exert beneficial effects on a myriad
of body systems, including cardiovascular, bone, and
brain. It has also been shown that decline in circulating
E2 after menopause is associated with an increased risk
for cardiovascular disease, osteoporosis, cancer, diabetes,
stroke, sleep disturbances, AD, and cognitive decline
[8, 16]. A study investigating a cohort of healthy women
transitioning into menopause showed increase in abdom-
inal obesity, triglycerides, total cholesterol and LDL chol-
esterol, fasting glucose, insulin resistance, and body mass
index (BMI), and increased blood pressure [17].
Numerous pharmacological strategies of the past

several decades that target menopause and associated
cerebro- and cardiovascular or metabolic disorders have
focused on substituting or replacing lost estrogen/+pro-
gesterone. The trials focused on primary prevention—
the Women’s Health Initiative (WHI)—and secondary
prevention—the Heart and Estrogen/progesterone Re-
placement Study (HERS) and the Women’s Estrogen for

Stroke Trial (WEST) [18]. These trials indicate that
postmenopausal hormone therapy is not effective for re-
ducing the risk of a recurrent stroke or death among
women with established vascular disease or for preven-
tion of a first stroke. Similar results exist for cardiovas-
cular disease, and even recent trials of postmenopausal
hormone treatment to improve cognitive outcomes have
been inconsistent [19, 20]. Later trial outcomes indicate
that postmenopausal hormone use may not benefit
verbal cognitive function, although current and past hor-
mone use is associated with differences in neural path-
ways used while assessing verbal semantic distinctions.
Overall, outcomes of these trials suggested that the hor-
mone therapy should not be initiated to prevent vascular
disease among postmenopausal women. Even trials of
postmenopausal hormone treatment to improve cogni-
tive outcomes have been inconsistent. Furthermore,
therapies based on estrogen substitution have been chal-
lenged by several risks associated with treatment, includ-
ing heart disease, stroke, blood clots, and breast cancer.
Although estrogen disappointed in the clinic, multiple

basic science studies in the field of stroke showed bene-
ficial effects of estrogen therapy [21–24] and therefore
provided better understanding of how estrogen(s) exert
beneficial effects on cerebro-, cardio-, and vascular sys-
tems. It is now known that one of the key functions of
estrogen is to work as a potent anti-inflammatory factor
[25–27], and therefore, disturbances in the cyclic pattern
of circulating estrogens at the menopausal transition ac-
tivate systemic innate and adaptive immune responses
[28]. The inflammasome is a key element of the innate
immune response [29, 30]. The inflammasome is a mul-
tiprotein complex responsible for the activation of
caspase-1 and processing of pro-inflammatory cytokines
such as IL-1β and IL-18 [31, 32]. As an element of the
innate immune response, the inflammasome complex is
a sensor of damage associated molecular patterns
(DAMPs) [33]. The onset of the innate immune responses
leads to activation of the adaptive immune response,
which response results in infiltration of peripheral im-
mune cells, particularly T cell invasion of the brain [34].
Ultimately repeated or sustained activation of innate
and adaptive immune responses can create the chronic
low-grade inflammation typical of aging. The presence
of the inflammasome complex in the cerebrospinal fluid
of post-menopausal women suggests that the decline in
estrogens induces a pro-inflammatory state [35].
Inflammasomes could be an important indicator of the
effect of menopause on the immune system. This re-
view assesses (1) our understanding of the menopausal
transition and associated estrogen decline, (2) how
these impact systemic and central nervous system (CNS)
inflammatory responses, and (3) possible mechanisms by
which estrogen receptor(s) regulate inflammasome
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activation in the brain to provide protection against ische-
mic damage.

The menopausal transition process
According to the classification of the American Society
for Reproductive Medicine’s Stages of Reproductive
Aging Workshop (STRAW), a woman’s life is delineated
into seven stages ranging from the onset of menstrual
cycles at menarche and the reproductive age to the peri-
menopausal and postmenopausal phases [1]. In the USA,
approximately 1.3 million women become menopausal
each year. The overall process of menopause transition
lasts about 14 years. As mentioned in introduction, the
average age of menopause is between 45 and 51 years,
and the mean life span of women continues to increase
beyond 80 years, which is about 5 years longer than that
of men [36, 37]. Therefore, women are likely to spend at
least one third of their life in the post-menopause stage,
a stage that is vulnerable to the morbidities caused by
immune and metabolic dysfunction and neurodegenera-
tive disease.
An additional 1% of women experience premature

menopause, before the age of 40 [38, 39]. Heredity ap-
pears to be the most important determinant of age at
menopause [40]. Premature menopause due to perman-
ent ovarian failure may be associated with sex chromo-
some abnormalities [39]. However, changes from the
body’s natural fluctuating levels of estrogens through
surgical removal of the ovaries or through natural meno-
pause, have been independently linked to an altered im-
mune profile, bone and blood vessel health, and changes
to cognitive processes [41]. Apart from surgical removal
of ovaries, cigarette smoking/tobacco use, exposure to
environmental toxins, and malnutrition have been associ-
ated with premature menopause [39]. Premature meno-
pause is defined by presence of amenorrhea, increased
gonadotrophin levels, and estrogen deficiency earlier in
life before actual age of menopause [42, 43]. Women with
premature menopause are at higher risk of premature
death, neurological diseases, psychosexual dysfunction,
mood disorders, osteoporosis, ischemic heart disease, and
infertility [39]. Additionally, environmental xenoestrogens,
by-products of industrialization—Bisphenol A (BPA),
bis(2-ethylhexyl)phthalate (DEHP), and di(n-butyl)phtha-
late (DBP)—modulate systemic estrogens and induce sys-
temic and CNS inflammation [44]. Xenoestrogens (XEs)
mimic or block the synthesis, metabolism, and transport
of normal endogenous hormones, disturbing normal
endocrine function [45]. Xenoestrogens exert their effects
through estrogen receptor signaling, resulting in epigen-
etic changes [46]. Multiple reviews on the environmental
chemical(s) have suggested that the exposure to these che-
micals depletes the ovarian reserve, leading to impaired

functioning of the ovary and a shortening of the repro-
ductive lifespan [47, 48] and early menopause [49].

Menopausal transition and medical comorbidities
Increasingly, multiple lines of experimental and public
health evidence suggest that the chronic inflammation
associated with estrogen decline can potentiate immune
and metabolic dysfunction and neurodegenerative dis-
ease, confounding peri-menopause and posing major
health challenges for twenty-first century women.
Women’s risk of cardiac arrest and stroke increases ex-
ponentially after the onset of menopause. There are
three main types of stroke: transient ischemic attack, is-
chemic stroke, and hemorrhagic stroke. It is estimated
that 87 percent of strokes are ischemic. Although men
have an increased stroke risk, more women than men
will experience a stroke during their lifetime because of
their increased life span [50, 51]. Women account for
60% of all stroke events [2, 52]. Studies consistently
show that women are more functionally impaired after
stroke and are less likely to receive thrombolytic therapy
with tissue plasminogen activator compared with men
[52]. Given the increased stroke burden and barriers to
acute stroke therapy in women, it is critical to under-
stand risk factors unique to women so that new strat-
egies for stroke prevention can be considered. Beyond
age at natural menopause, duration of ovarian activity
may be a marker of stroke risk. A recent case-control
study found that a longer lifetime estrogen exposure, de-
fined as the difference between age at menopause and
age at menarche, was associated with decreased stroke
risk [53]. Although the underlying biological mecha-
nisms driving increased stroke risk in women often re-
main unclear, they may be dependent on decline in
estrogens levels around peri-menopause.
One in five women develop AD in the seventh decade

of life. Late-onset AD is the most common form of de-
mentia, and two thirds of late-onset AD patients are
women. The higher longevity is one of the explanations
for the late-onset AD in women; however, increasing
evidence suggests that longevity alone is not the only ex-
planation, and there may be other underlying mecha-
nisms. Recent multi-modality brain imaging studies have
compared cognitively normal 40- to 60-year-old peri-
menopausal and post-menopausal women versus age-
and education-matched men. The studies indicate that
as women go through menopause, multiple imaging
findings indicative of AD endophenotype emerge, includ-
ing reduced brain glucose metabolism in frontal cortex,
increased amyloid-β (Aβ) accumulation, and gray matter
and white matter loss. The patterns of brain hypometabo-
lism correlated with measured reduction in platelet mito-
chondrial cytochrome oxidase (COX) activity, which
suggests the emergence of AD-like bioenergetic deficits in
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peri- and post-menopausal women [54–56]. Further
studies indicate that systemic inflammation and estro-
gen decline associated with peri-menopause can con-
tribute to accumulation of Aβ. Direct effects of E2 on
neuronal Aβ have been demonstrated, showing that
E2 decreased the generation and secretion of Aβ in
primary neuronal culture and that administration of
estrogen in estrogen-deprived mice reversed the ele-
vated levels of brain Aβ [57].
As mentioned above, comorbidities such as tobacco

smoking cause premature menopause and aggravated
systemic inflammation. Nicotine is a potent addictive
agent which inhibits aromatase enzyme activity. The
aromatase catalyzes the conversion of androgens into
estrogens [58]. Therefore, chronic nicotine exposure re-
duces circulating estrogen levels and triggers premature
menopause in women [59–67]. This epidemiological
finding has been modeled in female rats, in which
chronic nicotine exposure reduced endogenous E2 levels
[68]. Since E2 mediates its neuroprotective effects via
ligand-activated estrogen receptors (ERs) subtype alpha
(ER-α) and beta (ER-β), inhibition/knockdown of either
of these ERs in the brain abolishes E2-induced ischemic
protection, suggesting a key role of ER-α and/or ER-β-
activation [69–71]. Estrogen receptor-β was first re-
ported to localize to the mitochondria in 2004 [72].
Since then, it has been shown that long-term nicotine
exposure selectively decreased membrane-bound and
mitochondrial ER-β but not the nuclear ER-β. In a sep-
arate study, we observed that ER-β modulates inflamma-
some activation in the brain. However, in this study it
remained to be identified which subcellular location is
responsible for ER-β’s inhibitory effect on inflamma-
somes [68, 73–75]. Since nicotine reduces membrane-
bound and mitochondrial ER-β availability and increases
inflammasome activation and exacerbates post-ischemic
damage in the brain of female rats, ER-β located at these
two subcellular sites may be playing a role in regulation
of inflammasome activation [35]. It is also likely that ER-β
is translocated to cytoplasm following nicotine treatment,
thus reducing the presence of ER-β at these subcellular lo-
cations and resulting in increased inflammasome activation.
It has been demonstrated that ERs require palmitoylation
for their transport to various subcellular sites including the
plasma membrane [76–78]. Palmitoylation is a post-
translational modification that regulates membrane-protein
interactions and is a reversible process [79–82]. In our un-
published study in progress, nicotine reduced ER-β palmi-
toylation in the hippocampus. Therefore, analyzing ER-β
palmitoylation levels in the subcellular fractions and investi-
gating the role of membrane-bound ER-β with non-
permeable estrogen-conjugate may provide insight into the
role of membrane-bound ER-β in inflammasome activation.
In an in vitro study using organotypic slice cultures,

inhibition of inflammasome activation using Isoliquiriti-
genin (ILG) attenuated nicotine-induced ischemic cell
death after oxygen-glucose deprivation [35]. Isoliquiriti-
genin inhibits inflammasome activation by retarding
oligomerization of Apoptosis-associated speck-like protein
containing a caspase recruitment domain (ASC) and NOD-
like receptor-3 (NLRP3) activation. The neuroprotective ef-
fect of ILG reflects the suppression of nicotine-induced
inflammasome assembly in the brain [83, 84]. Since mito-
chondria play pivotal roles in initiation and regulation of
the NLRP3, and NLRP3 activators induce mitochondrial
destabilization, NLRP3 deubiquitination, and linear ubiqui-
tination of ASC [85], it is likely that the presence of mito-
chondrial ER-β may be hindering NLRP3-mitochondrial
interactions. Nicotine-induced loss of mitochondrial ER-β,
therefore, provides mitochondrial access to NLRP3, leading
to inflammasome oligomerization and activation; however,
these hypotheses remain to be tested. These findings
suggest that comorbidities like environmental expo-
sures to toxic compounds and drug addiction also
need to be taken into consideration when investigat-
ing menopause-associated inflammatory responses.

Menopause and immune responses
Estrogens are a key influence on immune and inflamma-
tory processes, summarized graphically in Fig. 1. The
role of estrogens is shown by increased inflammatory re-
sponses to infection and a higher rate of autoimmune
diseases in post-menopausal women when compared to
men, as well as by the variation of chronic inflammatory
disease activity with the menstrual cycle, pregnancy, and
menopause [86, 87]. It is very well known by now that
the paucity of ovarian steroidal hormones enhances the
inflammatory process predisposing menopausal women
to immune disorders such as rheumatoid arthritis [88],
that the pathology of multiple sclerosis worsens after
menopause [89], and that post-menopausal women are
more prone to stronger immune responses [90]. Addition-
ally, studies from various laboratories have demonstrated at
least a trend for increases in circulating pro-inflammatory
cytokines IL-6 and TNF-alpha after natural or surgical
menopause [91–94]. Deficiency of ovarian steroidal hor-
mones potentiates the pro-inflammatory state, predisposing
menopausal women to immune disorders [90, 95, 96]. The
endocrine transition of the peri-menopause to the post-
menopause stage, and the associated rise in chronic low-
grade inflammation, is suggested to accelerate ovarian
failure [10]. Declining ovarian steroidal hormones at meno-
pausal transition coincide with higher levels of circulating
interleukins IL-6, sIL-6, IL-4, IL-2, and tumor necrosis Fac-
tor (TNF) in postmenopausal women, and the latter two
are also shown to reverse by hormone therapy [9, 94, 97].
Some cytokines, viz. IL-4 and IL-2 levels, are shown to in-
crease with menopause, but the increases can be reversed
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by hormone therapy and are clearly suggestive of hormone
dependence [9]. Synchronous to the systemic inflammatory
responses, the peri-menopausal transition exhibits a decline
in brain glucose metabolism and mitochondrial respiration
[54, 98–100], myelin catabolism [101], and reduction of
brain white matter volume [56]. These changes in systemic
inflammation are also associated with beta-amyloid depos-
ition in brain [56] and changes in neurological function
[102]. Inflammatory signaling also changes T cell response,
causing a reduction in CD4-positive T cell numbers in
menopausal women and eventually inversion in the CD4/
CD8 T cell ratio, which is indicative of aging and can be
correlated with increased oxidative stress [103–105]. Over-
all these changes cause deterioration of the adaptive com-
ponent of immune system and lead to decreased numbers
of circulating B cells with menopause, especially during late
menopause in comparison to peri-menopause [106]. Hor-
mone replacement therapy retards the progress of immu-
nosenescence by increasing the production of the CD5-B-2

subset of B cells, once more supporting the role for estro-
gen in the immune response [106].

Recapitulating human female reproductive phases
in laboratory animals
Estrogen’s actions are complex, and it is often challen-
ging to systematically evaluate the biological underpin-
nings associated with estrogen’s actions in menopausal
women. Therefore, multiple laboratories around the
globe use rodent models that are invaluable tools for
studying the impact of estrogen fluctuations on a variety
of body systems including brain. Animal models provide
researchers with opportunities to gain a fundamental un-
derstanding of the key elements underlying reproduction
and aging processes, paving the way to explore novel
pathways for intervention associated with known health
risks. It is essential to keep in mind that some of the
mechanisms associated with aging and the transition

Fig. 1 At the reproductive senescence/menopausal transition the ovarian failure is associated with release of extracellular vesicles containing
inflammasomes, which may be responsible for low-grade systemic inflammation. This low-grade inflammation may compromise the blood-brain
barrier (BBB), making the brain more susceptible to inflammation and neurodegenerative diseases
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into a reproductively senescent state can differ when
translating from one species to another.
The key difference between human and rodent repro-

ductive senescence is that rodents have an estrous cycle
rather than a menstrual cycle and that rodents’ uterine
lining is reabsorbed rather than shed via menstruation.
The estrous cycle of rat is usually 4–5 days as against
the 28-day menstrual cycle in the human female. The es-
trous cycle is comprised of 4 main stages, viz. proestrus,
estrus, metestrus, and diestrus. The transition from the
diestrus to proestrus stage represents the follicular phase
of the menstrual cycle, and during this transition the es-
trogen levels increase. The next transition from the pro-
estrus to estrus stage is identified by a preovulatory
surge of luteinizing hormone. The gradually increasing
influence of progesterone corresponds to the ovulatory
phase in humans. Lastly, the transition from estrus to
metestrus represents the luteal phase, and this transition
is associated with higher titers of circulating progester-
one. The circulating ovarian hormone concentrations
are lowest at the diestrus stage, and this stage correlates
to the late luteal phase and menstruation in the human
female [107–109]. Between the age of 9 and 12months
of age, rodents typically experience irregular estrous cy-
cles. This phase is also known as estropause, when a per-
sistent and prolonged estrus phase may be associated
with anovulatory cycles. Eventually, animals transition
into an anestrous state, where ovulatory cycles cease and
low levels of gonadal steroids are evident [13, 110–112].
The fact that moderate and persistent elevations in es-
trogens can occur in the rat is one difference between
the rodent from human peri-menopause that can com-
plicate the interpretation of rodent models of human re-
productive phases.
A review by Galea et al. reported studies showing that

the naturally occurring fluctuations in ovarian hormones
across the rodent estrous cycle influence hippocampal
neurogenesis in adult virgin females [113]. Adult female
rats have 50% more newly proliferating cells and fewer
pyknotic cells in the dentate gyrus (DG) during proes-
trus (the high estrogen stage) compared to male rats or
adult female rats in either the estrous or diestrus stage
when estradiol levels are much lower [113]. These find-
ings from ovaries-intact rodents demonstrate mitogenic
and survival effects of estrogens in the hippocampal DG
[113]. Studies also showed that estrous cycle and
gonadal hormonal fluctuation affect the densities of den-
dritic spines on rodent cortical and hippocampal pyram-
idal neurons [114, 115]. A study also observed differential
expression of genes (DEGs) in the hippocampus of rodent
depending on the stage of the estrous cycle. A transcrip-
tome analysis of the hippocampus over the course of the
four consecutive stages of the estrous cycle demonstrated
that sixty-seven unique genes are differentially expressed.

The majority of the differentially expressed genes occur
over a single stage transition: thirty-one genes were found
to change from diestrus to proestrus, five genes from pro-
estrus to estrus, and seven genes from metestrus to dies-
trus. An exception to this is that there are twelve
differentially expressed genes with decreased expression
during the proestrus to estrus transition that are also dif-
ferentially expressed during the diestrus to proestrus tran-
sition [116]. Naturally, such differentially expressed genes
may have correlation with the function of the hippocam-
pus, and the hippocampus is widely believed to be essen-
tial for learning about the context in which conditioning
occurs [117]. A study assessed fear conditioning proce-
dures on naturally cycling female rats, where cued and
contextual-based fear learning were tested at the same
stage of the estrous cycle, during either estrus or proes-
trus. Female proestrus rats showed less spatial-contextual
conditioning than did male or estrous female rats. These
results suggest that the changes found during the proes-
trus part of the cycle are related to hippocampal informa-
tion processing and not to general changes in learning
ability, to shock sensitivity, or to state-dependent learning
[118]. Another study of similar approach demonstrated
that naturally cycling ovarian hormones influence fear ex-
tinction in that elevated ovarian hormone levels during
the proestrus phase appear to facilitate extinction recall
[119]. This study also reported sex differences in extinc-
tion recall when accounting for cycle phase in females and
suggested that the elevated fear observed in female relative
to male rats during extinction recall may parallel the
higher prevalence of anxiety disorders in women [119]. It
is now known that exposure to stressors such as foot
shock during fear conditioning paradigm leads to in-
creased expression of multiple inflammatory factors, in-
cluding the pro-inflammatory cytokine interleukin-1 (IL-
1) in the brain [120, 121]. IL-1 expression dependent on
endogenous estrogens may be responsible for different re-
sponses to fear conditioning.
It has been shown that these hormonal fluctuations

during different stages of the normal estrous cycle influ-
ence different pathological outcomes of the focal and
global CI. In stroke-prone spontaneously hypertensive
female rats (SHRSPs), middle cerebral artery occlusion
(MCAO) during proestrus induced infarcts that were
20% smaller compared with SHRSPs in metestrus [122].
Using a similar approach in young virgin female rats, a
subsequent study from our laboratory demonstrated that
the increasing milieu of circulating estrogens during the
transition from diestrus to the proestrus of the estrous
cycle induced ischemic protection to the hippocampal
CA1 neurons [123]. In the same study it was shown that
increased levels of circulating estrogens during the tran-
sition from diestrus to proestrus protects the neurons
from ischemic damage, by activating the cyclic AMP
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response element binding (CREB) protein-mediated sig-
naling [123]. Furthermore, the study design experimen-
tally mimicked the endogenous variations of E2 in
ovariectomized (OVX) rats by replacing E2 either at 48,
72, or 96 h intervals prior to induction of an ischemic
episode. In ovariectomized rats, a single bolus of exogen-
ous E2 replacement 48 h prior to an ischemic episode
provided maximum neuroprotection via phosphorylation
of CREB protein, which requires activation of ER-β
[124]. Even the long-term periodic E2-treatment (every
48 h) prior to global ischemia improved cognition and
reduced hippocampal neuronal loss by means of ER-β
activation [124]. Direct activation of ER-β by its agonist
treatments every 48 h for a month improved spatial
learning, memory, and ischemic neuronal survival in
OVX rats, confirming role of ER-β signaling [124]. On
the contrary, silencing of hippocampal ER-β using antisense
approach attenuated E2-mediated ischemic protection, sug-
gesting that ER-β plays a key role in mediating the benefi-
cial effects of periodic E2 treatments [125]. In support of
our study, a study by Vegeto et al. demonstrated that
physiological concentrations of E2 pretreatment prevent
brain inflammatory responses to lipopolysaccharide, a
powerful inflammatory agent [126]. E2 treatment inhibits
microglia activation, as demonstrated by the lack of acquisi-
tion of the typical reactive morphology of these cells, by the
impaired expression of proteins associated with phagocyt-
osis and cell migration, and by the reduced infiltration of
leukocytes through the brain parenchyma [126]. These
studies motivate investigation of prophylactic ER-β replace-
ment regimens to reduce menopause or post-menopause-
associated cognitive dysfunction, ranging from subjective
symptoms (“brain fog”) to measurable post-ischemic cogni-
tive decline.
In addition to aforementioned pretreatment strategies,

studies from various laboratories using a model of global
or focal ischemia in OVX rats show post-ischemic E2
treatment is neuroprotective [21, 23, 127]. The activation
of either/both ER-α and ER-β are proven neuroprotec-
tive against ischemic insult. However, the mechanisms
of neuroprotection conferred by these receptors seem to
be different. Estrogen receptor-dependent mechanisms
of neuroprotection could vary depending on the experi-
mental injury model used, sex of the animal, age of the
animal, pre- or post-treatment, time of E2 administra-
tion, type of estrogens administered, the level of estrogen
administrated, and the mode of administration of the
steroid (see review [128]). One of the caveats of most of
the aforementioned studies, including ours, is that they
were performed in young OVX female rats. Ovariectomy
in the young female rat mimics the condition of surgical
menopause and may lack typical physiological changes
in systems and CNS that are due to natural slow decline
in ovarian functions. Therefore, an approach to use

naturally reproductive senescence rats could be the more
appropriate model to investigate effects of menopause.
At approximately a year old, the female rat transitions

into an anestrous state, where ovulatory cycles halt and
low levels of gonadal steroids are present [110–112].
This situation mimics the human menopause. Utilizing
the ovary-intact rat model facilitates the evaluation of
the natural age-related cellular and molecular changes in
brain regions involved in normal reproductive function-
ing and feedback. A study from Sohrabji’s laboratory
using an animal model of menopause (reproductive sen-
escence) shows that MCAO causes a larger cortical-
striatal infarct in the older, ovary-intact acyclic group
compared with younger females [129]. Studies from that
laboratory also showed that E2 treatment is neuroprotec-
tive in younger females, while E2 paradoxically increases
infarct volume in middle-aged acyclic female rats [129].
Their study also suggested that there is an age-
associated loss of Insulin-Like Growth Factor-1, a neuro-
protectant that decreases with advancing age and is
downregulated by E2 treatment [129]. Consistent with
the findings in menopausal women, studies have demon-
strated increased pro-inflammatory cytokine levels in
middle-aged female rats [130]. Elevation in inflamma-
some proteins has been previously reported in the
hippocampus of aged rats [131]. Utilizing the ovaries-
intact rat model of reproductive senescence, our recent
study demonstrated the ovarian release of inflammasome-
containing extracellular vesicles, which reside via blood
and CSF in the CNS. This study also confirmed increased
expression of inflammasome complex proteins in the CSF
of peri-menopausal women, providing evidence that the
observed increase in inflammation occurs in both rodents
and human females [11]. Therefore, employing the
ovaries-intact rat model of reproductive senescence could
help understand inflammatory changes in the menopausal
brain. In a recently published study, we demonstrated that
adoptive transfer of serum-derived extracellular vesicles
(EVs) of peri-menopausal women to young female rats
triggered inflammasome activation in the rat brain, sug-
gesting that these EVs carry the factors that can prompt
inflammatory responses in the body, including CNS as
they can cross the BBB [11]. It has been shown that EVs
carry inflammasome proteins that play a role in the path-
ology of brain and spinal cord injury [132] as well as
stroke [133]. It has been demonstrated that high levels of
pro-inflammatory interleukin 1β exist in serum and brain
of reproductively senescent female rats as compared to
younger females and age matched males [11]. In an un-
published study, we observed a sex difference in systemic
pro-inflammatory cytokines IL-1 and 10 profiles before
and at 24 h following induction of transient MCAO; these
were much higher in middle-aged female compared to
male rats. These systemic inflammatory mediators
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released after an ischemic episode could compromise the
BBB and govern the overall ischemic outcome, as middle-
aged females have been shown to have severe ischemic
damage as compared to young female or male counter
parts.

Estrogen receptor-beta, the inflammasome, and
mitochondria
Numerous research studies, including ours, have estab-
lished that E2 mediates ischemic neuroprotection
through activation of estrogen receptor subtypes alpha
(ER-α), beta (ER-β), and G Protein-Coupled Estrogen Re-
ceptor 1 (GPER-1; also known as GPR30) [124, 134–136].
GPER is a newly identified member of the estrogen recep-
tor family and is shown to localize in the cerebral cortex
and hippocampus, basal forebrain, thalamus, and dorsal
striatum [137, 138]. Initial studies demonstrated that GPER
binds with E2, leading to rapid activation of extracellular
regulated kinases (ERKs) and cAMP generation [139–141].
Subsequently studies reported that GPER activation via G1
administration could rapidly activate PI3K-Akt and MEK-
ERK, which are rapid kinase signaling pathways in the
hippocampus, and exert strong neuroprotection against
global cerebral ischemia (GCI) [71, 137, 142]. A recently
published study shows that GPER activation upregulates
interleukin-1 receptor antagonism in the hippocampus after
GCI and thus limits ischemic cell death [143]. Importantly,
this study suggests that GPER preserves cognitive function
following GCI via enhancing the anti-inflammatory defense
mechanism of neurons by upregulating interleukin-1β
receptor antagonist (IL1RA) [143].
In the brain, ERα regulates reproductive neuroendo-

crine functions; however, ERβ plays a definitive role in a
variety of neurobiological functions [144]. Utilizing
subtype-selective estrogen receptor agonists has helped
determine the roles for these receptors in ischemic neu-
roprotection. Although ER-α and ER-β share similar lig-
and binding domains, ER-β possesses a relative binding
affinity for several steroid hormones that differs from
that of ER-α [144, 145]. Propylpyrazole triol (PPT) is se-
lective for ER-α, with a 400-fold relative binding affinity
for ER-α over ER-β [146]. Diarylpropionitrile (DPN) is a
subtype-selective agonist with a 70-fold greater relative
binding affinity and 170-fold greater relative potency in
transcription assays for ER-β than for ER-α [147, 148].
Studies have shown that both ER-α or ER-β concentra-
tion in the brain varies during aging [149, 150]. Both
ER-α and ER-β decrease in the synapses of the rat hip-
pocampal CA1 region with age but, in contrast to ER-α,
the expression of ER-β is increased in response to E2 in
older animals [150]. Because ER-β remains responsive to
E2, understanding the mechanisms by which ER-β pro-
tects the brain from ischemic damage in reproductively
senescent females could help develop future therapeutic

targets. It has now been shown that periodic ER-β acti-
vation using DPN protects hippocampal neurons from
ischemic cell death in reproductively senescent female
rats [125]. The observed ischemic protection conferred
by periodic ER-β agonist exposure reduced the inflam-
masome activation and decreased IL-1β proteins in the
hippocampus [125]. Silencing of hippocampal ER-β
using intracerebroventricular (ICV) antisense injections,
increased inflammasome activation, supporting the role
of ER-β in inflammasome regulation [125]. Therefore,
mechanisms by which ER-β reduces post-ischemic
inflammasome activation need to be further investigated.
It has been demonstrated that ER-β is localized and in-

volved in regulation of mitochondrial function in neurons
[73], summarized graphically in Fig. 2. Mitochondrial es-
trogen receptors play a direct role in estrogen-mediated
preservation and regulation of mitochondrial structure
and function [151–157]. The mitochondrial oxidative
phosphorylation (OXPHOS) system is located in the inner
mitochondrial membrane and is composed of 5 multi-
subunit complexes (complexes I-V or CI-CV). Biogenesis
of the mitochondrial oxidative phosphorylation system
(OXPHOS) depends on both mitochondrial and nuclear
genomes (see reviews [158, 159]). Estrogen receptors bind
to the estrogen responsive element (EREs) located in D-
loop mitochondrial DNA (mtDNA), suggesting that estro-
gen receptors are involved in modulation of mitochondrial
gene expression [160]. In this context, a study using a hu-
man breast epithelia cell line showed that E2-stimulated
increase in mRNA levels of the mtDNA-encoded genes
cytochrome c oxidase subunits I and II was inhibited by
ICI 182,780 (an estrogen antagonist; also known as Fulves-
trant), indicating estrogen receptor dependence [155]. An-
other study demonstrated that cytochrome c oxidase
(complex IV; CIV) subunit III mRNA levels significantly
increased in the hippocampus within 3 h of E2 treatment
of OVX female rats [156]. The presence of estrogen recep-
tors in both the nuclear and mitochondrial compartments
of the cell suggests regulation of mitochondrial biogenesis
and function through nuclear-mitochondrial cross-talk
[161, 162]. The concept of nuclear-mitochondrial cross-
talk is also supported by the fact that the ER-β is provided
with a mitochondrial targeting protein sequence (mTPS;
aa 220-270) while ER-α lacks an mTPS [155]. In further
support of the cross-talk concept, an in vitro study dem-
onstrated shuttling of ER-β between the mitochondria and
nucleus [163]. In contrast to direct regulation of mtDNA,
other studies showed that mitochondrial ER-β mediates
its effect through CREB phosphorylation, and, in turn,
pCREB can bind directly to the D-loop of mtDNA (the
control region of mtDNA) and regulates gene expression
of OXPHOS subunits [164–166]. Our study showed that
silencing of ER-β reduced nuclear and mitochondrial
pCREB following E2 treatment, suggesting that the ER-β
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is essential for CREB phosphorylation (pCREB) at both
subcellular locations [73]. Furthermore, silencing of ER-β
lowered protein levels of mitochondria-encoded complex
IV (CIV) subunits 1, 2, and 3 (Cox 1, 2, and 3), indicating
the role of ER-β in pCREB-mediated mitochondrial
OXPHOS protein expression [73].
The mammalian CIV is highly complex and ER-β reg-

ulates this complex in multiple possible ways that could
affect oxidative phosphorylation. The CIV is a large inte-
gral membrane protein composed of several metal pros-
thetic sites and 13-14 protein subunits. First, subunits of
this complex are partially encoded by both mitochon-
drial DNA and the nuclear genome [158, 159], and the
assembly process of the CIV complex is very

complicated and highly regulated because of dual origin.
Since the silencing of ER-β lowered protein levels of
mitochondria-encoded Cox 1-3, ER-β may also regulate
nuclear DNA dependent subunit expression [158]. Mito-
chondrial ER-β mediates its effect through CREB phos-
phorylation, and phosphorylated CREB can bind directly
to the control region of mitochondrial DNA and regu-
late gene expression of mitochondrial respiratory chain
protein subunits [164–166]. Knockdown of ER-β re-
duced nuclear and mitochondrial pCREB following E2
treatment in rat hippocampus, which suggests ER-β is
essential for CREB phosphorylation at both subcellular
locations, and the mechanism by which it must be regu-
lating CIV subunit expression [73]. Secondly, function of

Fig. 2 Putative mechanism of inflammasome activation in the neuron during pre- and peri-menopause. During pre-menopause, cyclic estradiol-
17β(E2) maintains expression of nuclear, membrane, and mitochondrial estrogen receptor-beta (ER-β) expression, which in turn inhibits
inflammasome activation by regulating mitochondrial functions, regulating biogenesis through cyclic AMP response element binding (CREB), and
by reducing mitochondrial reactive oxygen species (ROS) formation. ER-β also increases expression of anti-inflammatory protein expression and
reduces pro-inflammatory proteins. Decline in circulating estradiol-17β decreases estrogen receptor-beta (ER-β), causing activation of the
inflammasome by reactive oxygen species (ROS). The inflammasome activates pro-caspase-1 into caspase-1, resulting in the processing of pro-IL-
1β into IL-1β. Once active, IL-1β is secreted, resulting in a spread of the inflammatory response into neighboring cells. Similarly, extracellular
vesicles containing inflammasome proteins get secreted, thus also contributing to the spread of the inflammatory response. ASC, Apoptosis-
Associated Speck-Like Protein Containing CARD; ER-β, estrogen receptor subtype beta; ILR, interleukin receptors; IL-1β, interleukin 1β; NLR, nod-
like receptor; NF-κB, nuclear factor κB; ROS, reactive oxygen species; TLR, toll-like receptors; TNFα, tumor necrosis factor alpha
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CIV also depends on phosphorylation of its subunits,
and the CIV subunits Cox 1 and 4 undergo phosphoryl-
ation [167–169]. Thirdly, CIV subunits need correct
assembly, and any defects in CIV assembly and/or stabil-
ity of the enzyme result in mitochondrial dysfunction
[167, 169–171]. Although it is clear that ER-β is located
on mitochondria, our understanding of its presence on
outer or inner mitochondrial membrane remains limited
and needs investigation. Using isolated mitochondria
from female brain, our study showed that CIV activity is
directly regulated by ER-β and involved in regulation of
glucose metabolism in the brain [73, 172].
The mitochondria are not only the cell’s powerhouses;

they integrate a large number of signal transduction
pathways for a wide variety of biologically active mole-
cules. In this context, mitochondria could be considered
a cellular arsenal since they (1) enclose a potent cocktail
of pro-apoptotic proteins, (2) are a major site for pro-
duction of reactive oxygen species, and (3) maintain cal-
cium homeostasis. Disturbance(s) in fine-tuning of
mitochondrial functions could release these “loaded
weapons” thus activating cell death pathway(s). Mito-
chondrial dysfunction owing to ischemia triggers the
generation of mitochondrial reactive oxygen species
(mitoROS). Therefore, maintaining normal mitochon-
drial function is crucial for cell survival. Despite numer-
ous studies conducted to understand mechanisms of
mitochondrial function, there are multiple gaps, and
new areas are constantly emerging which require further
investigation.
Emerging studies are showing a major role of mito-

chondria in regulation of innate inflammation induced
by inflammasome protein NLRP3, which is a sensor for
disrupted homoeostasis, including perturbed mitochon-
drial function [173, 174]. One of the mechanisms of
NLRP3 activation supported by the most studies in-
cludes the generation of mitoROS and translocation of
NLRP3 to the mitochondria, leading to the release of
mitochondrial DNA (mtDNA) [31, 175–177]. NLRP3 ac-
tivators induce mitochondrial destabilization, NLRP3
deubiquitination, linear ubiquitination of inflammasome
protein ASC, and externalization or release of
mitochondria-derived molecules such as mitochondrial
DNA. These molecules bind to NLRP3 that is translo-
cated to the mitochondria and activate the NLRP3
inflammasome [85]. Mitochondria are proposed to har-
bor NLRP3 and be able to regulate the activity of the
inflammasome complex, and mitochondrial ROS can ex-
acerbate inflammasome immunogenic signals. In con-
trast, activation of mitophagy reduces inflammation by
clearing mitochondrial bound NLRP3 complexes [178–
180]. It is apparent that NLRP3 plays a role in ischemic
pathology, as NLRP3 knockout animals have significantly
reduced infarct size and neurovascular damage after

focal cerebral ischemia [181]. With respect to E2 regula-
tion of NLRP3 inflammasome activation, E2 has been re-
ported in one study to suppress NLRP3 inflammasome
gene expression in the cerebral cortex after focal cere-
bral ischemia [182]. Estrogen modulation of inflamma-
tion in hippocampus and of depression- and anxiety-like
behavior is ER-β dependent [183]. However, the role of
ER-β in activation of the NLRP3 inflammasome in the
CNS remains unknown. The fact that ER-β activation
confers ischemic protection, stimulates mitochondrial
functions, and inhibits inflammasome activation is sug-
gestive of its central role in cross-talk between inflam-
masome and mitochondria. A better understanding of
the underlying mechanisms can ultimately lead to thera-
peutic strategies.

Conclusion
There is increasing and compelling evidence showing
that estrogen decline during the menopausal transition
drives a systemic inflammatory state. This state is char-
acterized by systemic pro-inflammatory cytokines de-
rived from reproductive tissues, alteration in the cellular
immune profile, increased availability of inflammasome
proteins in the CNS, and a pro-inflammatory micro-
environment which makes the brain more susceptible to
ischemic and other stressors. These pro-inflammatory
processes appear to compromise ER-β’s role in protect-
ing the brain from ischemic damage and to compromise
mitochondrial functions that modulate inflammasome
activation. This state sets the stage for late life neurode-
generative/neurovascular disease with co-morbid cogni-
tive dysfunction or decline. The use of ER-β-selective
agonists may constitute a safer and more effective target
for future therapeutic research than an ER-α agonist or
E2. ER-β activation in the brain confers ischemic protec-
tion, stimulates mitochondrial functions, and inhibits
inflammasome activation. ER-β agonists may be safer in
that ER-β lacks the ability to stimulate the proliferation
of breast or endometrial tissue. The ER-β agonist may
be able to act both on the cerebro- and cardiovascular
system to reduce the ischemic burden. Thus, ER-β sig-
naling is a guide for future translational research to re-
duce cognitive decline and cerebral ischemia incidents
and impact in post-menopausal women, while avoiding
the side effects produced by chronic E2 treatment.
Therefore, the model of reproductive senescence as a
systemic inflammatory phase of life is crucial to under-
standing neurological changes that can occur in meno-
pausal women, and to the development of novel
therapeutic targets to mitigate morbidities associated
with age and reproductive senescence.
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