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Abstract

Development of central nervous system (CNS) is regulated by both intrinsic and peripheral signals. Previous studies
have suggested that environmental factors affect neurological activities under both physiological and pathological
conditions. Although there is anatomical separation, emerging evidence has indicated the existence of bidirectional
interaction between gut microbiota, i.e., (diverse microorganisms colonizing human intestine), and brain. The
cross-talk between gut microbiota and brain may have crucial impact during basic neurogenerative processes,
in neurodegenerative disorders and tumors of CNS. In this review, we discuss the biological interplay between
gut-brain axis, and further explore how this communication may be dysregulated in neurological diseases. Further, we
highlight new insights in modification of gut microbiota composition, which may emerge as a promising therapeutic
approach to treat CNS disorders.
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Introduction
Abundant and diverse microbial communities coexist in
humans and mice. Majority of these microorganisms
including bacteria, archaea, fungi, and viruses reside in
human gastrointestinal tract, and are collectively
referred as gut “microbiota” [1]. Studies on the symbiotic
microflora trace back to almost 30 years [2]. Accumu-
lating evidence suggests that microbiota are involved in
the physiology and pathology of cellular organisms, and
hence has implications in both health and disease [3].
Distinct microbial flora, which is inherited maternally at
birth, changes due to our dietary habits and environ-
mental signals [4–6]. The role of microbiota in various
physiological activities, including in immune system, has
been well established previously [7]. In addition, al-
terations in gut microbes in response to critical immune
signaling contribute to the illnesses in intestine and
distal organs, such as inflammatory bowel disease,
autoimmune disease, and various types of cancer [8, 9].

The maturation and development of human central
nervous system (CNS) is regulated by both intrinsic and
extrinsic factors. Studies mostly from germ-free (GF)
animals or animals treated with broad-spectrum anti-
biotics show that specific microbiota can impact CNS
physiology and neurochemistry [10]. GF mice that are
devoid of associated microflora exhibit neurological defi-
ciencies in learning, memory, recognition, and emotional
behaviors [11, 12]. They display variations in important
neurotransmitters (e.g., 5-HT, NMDA, and BDNF) com-
pared to conventional mice [13–15]. In humans, evi-
dence for interplay between gastrointestinal pathology and
neuropsychiatric conditions has been reported in condi-
tions such as anxiety, depression, and autism [12, 16].
Furthermore, gut microbiota has been shown to modulate
the development and homeostasis of CNS in context to
immune, circulatory, and neural pathways [17]. In this
review, we first discuss recent findings related to the inter-
action between gut microbiota and immune system, par-
ticularly key innate and adaptive immunity and signaling
pathways. We then discuss the contribution of microbiota
in CNS and pathogenesis of CNS disorders such as
Parkinson’s disease (PD), Alzheimer’s disease (AD), mul-
tiple sclerosis (MS), and gliomas. Finally, we discuss the
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role of gut-brain interactions during development of ner-
vous system and neurodegeneration, as well as potential
approaches for treating CNS disorders.

Interplay and reciprocal regulation between microbiota
and immune system
The human immune system has evolved to maintain a
symbiotic relationship between host and microbiota, and
its disruption in dynamic immune-microbial interaction
leads to profound effects on human health [18]. In this
section, we discuss the interplay between resident micro-
biota and key immunological signaling, and implications
of their relationship in CNS development and neuro-
logical diseases.

Inflammasome signaling pathway
Inflammasome is an innate immune signaling complex,
which is activated in response to diverse microbial and
endogenous danger signals. To date, various pattern-rec-
ognition receptors (PRRs) in different families, including
NLRP1, NLRC3, NLRP6, NLRP7, NLRC4 and AIM2,
have been identified to play a role in inflammasome acti-
vation. Inflammasomes activation recruits ACS (apopto-
sis-associated speck-like protein containing a caspase
recruitment domain) and the cysteine protease caspase 1
through caspase activation and recruitment domain
(CARD) to induce the proteolytic cleavage of
pro-caspase1 to generate mature and active caspase 1,
which further process pro-IL-1β and pro-IL-18 to the
final production of bioactive IL-1β and IL-18 proteins
[19]. We identified NLRC5 as a key protein that nega-
tively regulates NF-κB and type I interferon (IFN-I)
signaling to control the homeostasis of innate immune
system [20]. Earlier reports indicate that elevated levels
of short-chain fatty acids (SCFAs) fermented by com-
mensal microbiome activate NLRP3 inflammasome in
gut epithelium through binding to GPR43 and GPR109A
[21]. Furthermore, inflammasome activation leads to the
release of IL-18, which contributes to the gut homeos-
tasis and provides a protective role in colitis [21]. The
protective effects of SCFAs in gastrointestinal graft-ver-
sus-host disease require GPR43-mediated ERK phos-
phorylation and activation of NLRP3 inflammasome
[22]. NLRP6 inflammasome signaling plays an important
role in modulation of microbiota. For example, NLRP6
deficiency leads to distorted colonization in intestinal
microenvironment and possibly causes dysbiosis-driven
diseases [23]. Further studies reveal that ASC,
Caspase-1, and IL-18 knockout exhibit altered micro-
biota colonization as compared with that of wild-type
mice. The inflammasome-mediated dysbiosis impacts a
number of diseases [24]. Major depressive disorders are
often associated with activated inflammasome and
elevated levels of proinflammatory cytokines, such as

IL-1β, IL-6, and IL-18 proteins [25, 26]. By contrast,
inhibition of caspase-1 attenuates inflammation and
anxiety-like behaviors and modulates the composition of
gut microbiota. Anti-caspase-1-treated mice show
increased flora of Akkermansia spp. and Blautia spp.
related to the induction of Foxp3 regulatory T cells
(Tregs), and suppression of IL-1β- and IL-6-mediated
pathways [27]. Collectively, these studies indicate that gut
microbiota modulate inflammatory response via inflamma-
some signaling to affect anxiety- and depressive-induced
behaviors.

Type I interferon signaling pathway
Type I interferon (IFN-I) is a pleiotropic and ubiquitous
cytokine which plays an essential role in both innate and
adaptive immunity and in the maintenance of host
homeostasis. IFN-I is induced by pathogen-associated
molecular patterns (PAMPs). Secretion of endogenous
IFN-I depends on activation of several classes of PRRs,
such as Toll-like receptors (TLRs), nucleotide-binding
domain, and leucine-rich repeat containing gene family
(NLRs) and RIG-I-like receptors (RLRs), and they play
significant role in priming the host to various viral, bac-
terial, or tumor components [28, 29]. Upon activation,
most TLRs recruit a common adaptor molecule,
MyD88, which interacts with various downstream
factors to activate NF-κB pathway [30]. IFN-I has also
been shown to stimulate the maturation of DC and
enhancement of cytotoxic T cells, which are crucial for
immune responses against cancers [31]. Our previous
study illustrated that MyD88-dependent IFN-I-stimulated
maturation of plasmacytoid DCs was negatively regulated
by SOCS1 [32]. Genetic ablation of SOCS1 caused robust
production of IFN-α/β that led to potent adaptive immu-
nity against lethal malaria infection [32]. Additional studies
have suggested that IFN-I exhibits both positive and
negative immunomodulatory functions in various
human conditions. IFN-I provides no any therapeutic
benefit in IBD, it may even exacerbate the disease [33].
By contrast, IFN-I regulates cell growth and induces
apoptosis in several types of cancers including
hematological malignancies and solid tumors [33].
Therapeutic application of IFN-I in autoimmune dis-
orders (such as MS) have proved to be effective
through the inhibition of inflammasome signaling
[34]. Effects of IFN-I on inflammation and host
hemostasis have been linked to the recruitment of
Tregs [35, 36]. The role of IFN-I in modulation of
microbiota has been extensively studied. For instance,
two strains of Lactobacillus acidophilus have an ability to
induce anti-viral responses via TLR2-dependent IFN-β in
murine bone marrow-derived DCs [37]. Commensal lactic
acid bacteria have been shown to trigger TLR3-mediated
INF-β secretion by DCs in the intestine [38]. Metabolite
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produced by clostridium orbiscindens protects mice from
influenza through augmentation of IFN-I signaling [39].
Protective microbiota-dependent IFN-I signaling is
blocked by autophagy proteins [40]. Host IFN-I can also
affect the composition of gut microbial communities,
which suggests a bidirectional interaction between micro-
biota and IFN-I signaling [29]. These observations
(regarding microbiota and IFN-I) point to the importance
of synergistic factors in modulation of immune response
to pathogenic challenges, and this potential interplay may
also influence biological performance of CNS [41].

NF-κB signaling pathway
NF-κB family of transcription factors contribute to both
innate and adaptive immune responses and maintenance
of immune system [42]. Our previous study identified
dynamic K63-linked ubiquitination of NLRC5 which
regulates NF-κB signaling and dynamically shapes
inflammatory responses [20, 43]. Alterations in gut
microbiota composition contribute to various inflamma-
tory diseases via regulation of innate immunity, espe-
cially via NF-κB signaling [44]. Studies have shown that
in ampicillin-treated mice, variations of succinate and
butyrate leads to significant enhancement of NF-κB [45].
Moreover, the invasion by Campylobacter jejuni due to
dysbiosis of intestine microbiome also resulted in acti-
vation of NF-κB due to secretion of various cytokines
which stimulate different immune cells [46]. In contrast,
another strain of microbiota, Lachospiraceae and its
metabolites mediate protective function of NLRP12 in
extreme inflammatory diseases by attenuating the

activation of NF-κB/MAPK signaling and high fat
diet-induced inflammasome activation [47]. Additional
studies have revealed that the interaction between
microbiota and NF-κB signaling is also responsible for
CNS inflammation. For instance, the disturbance of gut
microbiota induced by antibiotic treatment leads to
inhibition of BDNF expression (in hippocampus) and
activation NF-κB, which leads to severe neuroinflam-
mation and anxiety-like behavior in animal models. In
contrast, administration of lactobacilli alleviates CNS
inflammation and mitigates anxiety-related symptoms
[48]. Similarity, in a colitis model, elevated NF-κB is
detected in intestines as well as hippocampal zone with
cooperative expression of TNF-α, which leads to serious
memory impairment. The restoration of unbalanced gut
microbiota attenuated both colitis and amnesia [49].

Microbiota influences in CNS components (gut-
brain axis)
Gut-brain axis is used to define the relationship between
microbiota and their interaction with brain, resulting in
changes in CNS status (Fig. 1). A notable role of human
digestive system in brain development has been proposed
[15, 50]. Dysbiosis of microbial species may induce
atypical immune signaling, imbalance in host homeostasis,
and even CNS disease progression. In this section, we
further discuss the cross-communication between com-
mensal microorganisms and different components of
CNS, and potential of immune signaling involved in this
complex crosstalk (Fig. 2).

Fig. 1 Microbiota and the gut-brain axis. a The majority of microorganisms reside in the gastrointestinal tract of human beings and impact wide
range of physiological or pathological activities of the host. b The concept of “gut-brain axis” includes complicated direct and indirect interaction
of gut microbiota and their metabolites with different cellular components in CNS through immunological signaling. Disruption of hemostasis in
gut microbiota can lead to the alternations in CNS, resulting in the progression of various CNS disorders
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Immune cells in CNS
Although CNS is frequently considered an immune-
privileged site, the functional lymphatic vasculature (in
dural meningeal membrane surrounding the brain) and
the permeable brain–blood barrier (BBB) could serve as
a gateway for signals transmission, thereby suggesting a
role of immune cells in CNS during challenges [51, 52].
In addition to glial cells, the resident immune cells (such
as macrophages, CD8+ T cells, Tregs, and other CD4+ T
helper (Th) cell subsets) are actively involved in innate
and/or adaptive immune responses [53–55]. Gut micro-
biota has been reported to promote different subsets
of CD4+ T cells through antigen stimulation and acti-
vation of immune signaling pathways. For example,
Bacteroides fragilis promotes the development of Th1
cells through polysaccharide A-dependent pathway [56],
while Clostridium is shown to promote Treg cell differen-
tiation [57]. In addition, segmented filamentous bacterium
(SFB) stimulates the activation of Th17 and innate lym-
phoid cells [58–61], with specific bacterial antigens from
SFB identified for gut Th17 cell activation [62]. Likewise,
Acinetobacter baumannii and Porphyromonas uenonis
also play an important role in promoting gut Th17 cells
[63]. In experimental autoimmune encephalomyelitis

(EAE) models, CD4+ Th cells play an important role in
MS. Whereas IFN-γ-producing Th1 cells have pathogenic
role in MS, IL-4- and IL-10-producing Th2 cells exhibit
protective function [64]. Furthermore, Th17 cells are also
involved in the pathogenesis of this disease, as mice
lacking IL-23, a major cytokine for Th17 cells diffe-
rentiation, are protected from EAE [64, 65]. Foxp3-
expressing Tregs, which play critical roles in modulating
inflammation in CNS, exert a suppressive function in EAE
model via secretion of anti-inflammatory cytokines IL-10
and TGF-β [66].
Microbial metabolites have been well documented as

activators of immune cells. As mentioned above, SCFAs
activate inflammasome through GPR-dependent mecha-
nisms to conduct suppressive functions in colitis [21],
and the GPR-inflammasome reactions are also respon-
sible for SCFA-induced differentiation of suppressive
Tregs [67, 68]. Specifically, SCFAs induce proliferation
of Foxp3+ Tregs via histone modifications, with
increased acetylation and decreased deacetylation at
Foxp3 promoter region [69, 70]. Furthermore, a large-
scale production of butyrate and propionic acid from
intestinal microbiota exhibits a protective effect in
inflammatory reactions, with increased Tregs through

Fig. 2 Influences of the gut microbiota on different components in the CNS. a The byproducts of bacterial metabolism in gut, SCFAs, are able to
induce proliferation of Foxp3+ Tregs through histone-modification. Administration of specific strains of microbiota or metabolite promotes the
development of Th1, Th17 cells, and other cytokines. b Gut microbiota contribute to the maturation progress of naïve microglia and the number
of mature microglia decreases in the absence of microbiota while the total count of microglia remains the same. Amp-sensitive microbiota
catalyze dietary tryptophan to AHR agonists which could bind to the AHR on astrocyte and induce anti-inflammatory effects. c Deletion of gut
microbiota leads to neurogenesis in hippocampus in animals raised in GF conditions or treated with antibiotics. d BBB in GF mice are more
permeable with decreased expression of tight junction proteins while the integrity of BBB could be restored by colonization of microbiota or
supplementation of SCFAs. Vagus nerve is a critical component linking biological functions in gut and brain. Signals from gut could either directly
interact with vagus nerve or indirectly through the mediation of EECs and hormonal factors
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Foxp3 promoter modification [69, 71]. In addition to
Tregs, SCFAs are also reported to stimulate the produc-
tion of retinoic acid in intestine, which inhibits Th17 cell
differentiation and promotes Treg proliferation, thus
contributing to the beneficial effects in neuroinflamma-
tion [72] and in preclinical model of MS as well [73].
Long-chain fatty acids (LCFAs), on the contrary,
enhanced differentiation and proliferation of Th1 and
Th17 cells, with increased mRNA expression of pro-
inflammatory factors, e.g., TNF-α, IFN-γ, and Csf2,
which further leads to a severe phenotype in MS animals
[73]. Since an impaired BBB allows the transmission of
these molecules, it is important to focus on the
immune-regulating metabolites derived from gut and
their roles in physiology and pathology of brain.

Microglia and astrocytes
Microglia originate from yolk sac-derived erythromye-
loid progenitors (EMPs; E9.0-E9.5), migrate to brain
during development, and maintain until adulthood
through local self-renewal [74]. Microglia have been
reported to protect brain against various pathological
conditions, through the involvement in immune
response activation, phagocytosis, and cytokine produc-
tion [75, 76]. In addition, microglia regulate synaptic
transmission, synaptic pruning, and neuronal circuit
formation, which are involved in brain development and
homeostasis [75, 77–79]. Recent studies have shown that
microbiome impacts the properties and function of
microglia. For instance, with the absence of microbiota,
microglia in GF mice not only display alteration in their
morphological characteristics and gene expression pro-
files, but they also exhibit inhibition in their maturation
state with an increased number of immature microglia
in brain cortex [80]. Similarly, antibiotic treatment in
normal mice is associated with increased naïve micro-
glia, without obvious difference in total microglia num-
ber [80, 81]. Immature microglia are further suggested
to functionally impair the immune activation and
responses to challenges in GF mice, which is associated
with downregulation of inflammatory factors and inhi-
bited innate immune signaling pathways [16, 80].
Notably, microbial deficiency-associated immunosup-
pressive phenotype in GF mice can be normalized by
postnatal administration of microbial SCFAs, suggesting
that certain microbiota species can drive the maturation
of microglia and maintain their homeostasis [80].
Furthermore, expression of GPR43 in innate immune
cells mediates inflammatory responses by binding with
SCFAs, and mice lacking GPR43 expression display
severe defects in microglia (major alternations on
dendrite length, number of segments, branching points,
terminal points, and increased cell volumes), which are

similar to the defects observed in GF mice [80]. Consid-
ering the intimate relationship between GPR43 and
inflammasomes, maintenance of microglia-mediated im-
munological homeostasis may depend on the interplay
between GPR43 and inflammasomes signaling. Recent
studies have revealed that microglia also exhibit sex- and
age-dependent responses to microbiota. For instance,
microglia from male mice have more sensitivity to the
deficiency of microbiome in embryonic stage, whereas in
female mice, loss of microbiota leads to the most
dramatic alterations in transcriptomic profiles during
adulthood [82]. Dimorphic changes in microglial sig-
natures establish a distinct connection between gut
microbiota and sex-biased pathologies in CNS [82].
Astrocyte is the most abundant cell population in CNS

and they outnumber neurons by almost fivefold [83].
Similar to microglia, astrocytes have multiple essential
functions in the maintenance of CNS integrity, including
control of blood perfusion in cerebrum, maintenance of
brain–blood barrier (BBB) stability, regulation of ion
gradient balance, and modulation of neuron or nutrient
transmission [84]. Excessive activation of astrocytes is
emerging as a vital mechanism underlying the produc-
tion of neural cytotoxic or immune inflammatory sub-
stances, leading to CNS dysfunction and neurological
disorders [85, 86]. Activation of astrocytes from their
resting state is often affected by multiple factors within
or outside of CNS, gut flora-mediated metabolites being
one of them, which act on aryl hydrocarbon receptors
(AHR) in animal models. Upregulated AHRs in astrocytes
induce anti-inflammatory activity by restricting the re-
cruitment and ability of neurotoxic immune cells through
participation in IFN-I signaling [41]. Ampicillin-sensitive
microbes in gut are able to catalyze conversion of dietary
tryptophan to AHR agonists and contribute to the resis-
tance against inflammation and protection of neurons
from inflammatory attack [87, 88]. Additional studies have
shown that mice treated with antibiotic ampicillin exhibit
reduced AHR agonist levels and worse disease symptoms.
However, mice supplemented with tryptophan metabolites
show reduction in the severity of symptoms and
pro-inflammatory molecules Ccl2 and Nos2 expression in
astrocytes [41]. Distinct from the anti-inflammatory effects
of specific microbes in gut, Porphyromonas gingivalis, one
of the most common gram-negative bacterial species in
oral chronic inflammatory diseases, stimulates astrocytes
(via activation of TLR4 to produce increased levels of
cytokines) and contributes to the neuroinflammatory
lesions [89, 90]. Studies have shown that P. gingivalis is
mediated by LPS which locates in the outer membrane
of bacteria; activated P. gingivalis then trigger the toxic
activation on astrocytes [91]. Collectively, these findings
point to the species-specific effects of gut microbiota
on astrocytes.
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Neurogenesis
During CNS development, the generation of neurons is af-
fected by exposure to various environmental factors [15]
while host microbiome also exhibits dynamic variation in
its composition during brain maturation [92]. Previous
studies suggest that the permeability of maternal-fetal
interface allows regulators from gut bacteria to activate
TLR2, which promotes fetal neural development and has
potential impact on cognitive function during adulthood
[93, 94]. Previous studies also point to the role of gut
microorganisms in modulating and directing develop-
mental progress of neurogenesis in CNS, and that this
complex interaction mainly occurs in hippocampus [95,
96]. Hippocampal formation involves the limbic system,
which is known for memory, and increased neuroge-
nesis in this area weakens established memory but faci-
litates the encoding of new conflicting information in
mice [97]. Critical role of microbiota in neurogenesis in
hippocampus and its potential link with loss of memory
comes from the studies conducted in GF mice. Prolife-
ration of neurons at dorsal hippocampus is greater in
GF mice than in conventional mice. However, post-
weaning exposure of GF mice to microbial clones did
not influence neurogenesis, suggesting that neuronal
growth is stimulated by microbiota at an early stage
[98]. The connection between microbiota and hippo-
campal neuronal generation is further strengthened by
the findings that deficient neurogenesis can be counter-
acted by a probiotic combination of specific bacterial
strains [99, 100]. As mentioned earlier, NF-κB signaling
participates in microbiota-neuron axis. Studies indicate
that microbiota disturbance leads to increased NF-κB
activation and TNF-α expression with induced memory
impairment in animal models, and the restoration of
microbiota composition alleviates neuroinflammation
in hippocampus and ameliorates relevant symptoms
[49]. Additional studies are warranted to precisely
define the specific pathways and microbial species that
mediate neurogenesis and CNS health.

Brain–blood barrier
As a selective barrier between brain and circulatory
system, brain–blood barrier (BBB) develops during ges-
tation and serves as a gateway for various signals from
gut to brain. The BBB-permeable compounds usually
have a low molecular weight, with little or no charge,
and have lipid-soluble properties [101, 102]. Studies have
shown that metabolic products in the intestines exhibit
these characteristics, which enables their free access
through BBB to modulate brain physiology [101, 103].
Due to the lack of gut microorganisms in GF mice, an
intact BBB is disrupted with diminished expression of
key tight junction proteins, i.e., occludin and claudin-5
in brain endothelium [104]. However, BBB permeability

can be restored upon colonization of specific bacteria,
such as Clostridium tyrobutyricum, which produce high
levels of butyrate, or by the administration of bacterial
fermentation products to GF mice [104]. Whereas
greater BBB permeability is observed in sterile fetuses
than in adults [105, 106], treatment with a low-dose of
penicillin in young mice promotes BBB integrity and
upregulates the expression of tight junction proteins via
long-term alterations in gut microbiota [107]. Taken
together, these studies suggest that BBB integrity is regu-
lated by certain key components of microbiota, which in
turn mediate the transmission of more microbial signals
from gut to brain.

Vagus nerve
Vagus nerve (VN) is a component in parasympathetic
nervous system and a key route of neural communication
between CNS and gut microbiota [108, 109]. VN actively
participates in the bidirectional interactions between gut
microbiota-brain to maintain homeostasis in both cere-
brum and intestine. For example, perturbations of the
nerve may cause either CNS dysfunction, e.g., mood disor-
ders or neurodegenerative diseases, or gastrointestinal
pathologies, such as inflammatory bowel disease and
irritable bowel syndrome [110–112]. Previous studies have
indicated that vagal efferent fibers regulate the responses
to environmental or pathophysiological conditions in
gastrointestinal system via the release of neurotransmit-
ters [113, 114]. A minor inappropriate activation of VN
results in excessive activation and elevation of neurotrans-
mitters, thereby impairing the digestive process and in-
fluencing gastric motility [112, 115]. Moreover, immune
regulatory effects of VN on local immunity and intestinal
permeability have also been observed. Studies have estab-
lished that the activation of M1 macrophages and
increased levels of proinflammatory cytokines induced by
abdominal surgery are alleviated by electrical vagal stimu-
lation, which might relieve inflammatory reactions after
surgery and improve postoperative recovery [116]. Fur-
thermore, the stimulation of VN by electro acupuncture
promotes the expression and proper localization of tight
junction proteins, thus decreasing intestinal permeability
and exerting protective effects in intestinal epithelium
barrier [117, 118].
Microbes rely on other types of cells located in the

epithelium to transmit physiological signals from gut to
brain [119]. Enteroendocrine cell (EEC) is one subtype of
epithelial cells (less than 1%), which secrete various factors
in metabolic processing of dietary nutrients [120, 121].
Due to the anatomical position and function, EECs com-
municate with gut microbiota to send output signals in
forms of hormones to afferent neurons [122, 123]. The
production of hormones such as 5-hydroxytryptamine
(5-HT), cholecystokinin (CCK), and peptide YY (PYY) by
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EECs is stimulated by bacterial metabolites via TLRs
expressed on the surface of EECs [123, 124]. These hor-
monal mediators are involved in further activating neural
afferent fibers by binding to chemoreceptors [125, 126].
Additionally, a study found that signal transduction from
gut can be completed by direct interactions with vagal
afferent fibers in a specific subset of EECs [127]. Mono-
synaptic tracing revealed a functional synapse between
special EECs with vagal nodose neurons, thus connecting
the intestinal lumen with CNS and neurotransmitter
glutamate (inside this synapse), which transduces signals
to vagal neurons and completes the neuroepithelial circuit
[127]. Modulation of VN by gut flora is further sup-
ported by the observation that oral administration of
Campylobacter jejuni promotes the activated state of
neurons in nucleus tractus solitarius, as the first intra-
cranial entrance of vagal afferents [128, 129]. On the
contrary, another report indicates that vagotomized mice
treated with Lactobacillus rhamnosus show minimal im-
provement in anxiety- and depression-related behaviors,
with no change in the expression of GABA receptors in
brain [108]. A Swedish register-based matched-cohort
human study provides a suggestive evidence for a poten-
tially protective effects of truncal, but not of selective
vagotomy in PD development, supporting the hypothesis
that original pathological signals of PD start from peri-
pheral tissues and later spread to CNS by VN-mediated
mechanisms [130, 131]. Additional studies have shown
that VN stimulation is widely used an as effective treat-
ment method for intractable epilepsy and to improve the
related mental symptoms [132, 133]. Thus, administration
of probiotics to modify VN function could be a promising
strategy in the future for the treatment of CNS disorders.

Microbiota and CNS disorders
Since microbiota influences CNS through various im-
munological pathways (such as inflammasome, IFN-I,
and NF-κB), it is reasonable to consider its contribution
in progression of various neurological disorders. Here,
we discuss the involvement of microbiota in neuro-
inflammation or neurodegenerative pathologies and
discuss potential therapeutic approaches for the treatment
of various diseases.

Multiple sclerosis
Multiple sclerosis (MS) is an inflammatory disease
characterized by the immune-mediated demyelination
of neural axon. Loss of myelin results in varying
degrees of distinct neurological disorders, including
motor, sensory, visual, autonomic, and cognitive
impairment [134–136]. Abnormal CD4+ T cell-related
immune responses, especially the secretion of pro-
inflammatory cytokines from hyperactive Th1 and Th17

cells, lead to the infiltration of various immune cells in
CNS, initiating an immunogenic attack against myelin
sheath surrounding neurons [137, 138]. Poor immuno-
suppressive activities of Tregs in MS patients may also
worsen the aberrant autoimmune reactions [139, 140].
It has been suggested that MS pathogenesis originates
in the immune system, with significant contributions of
both genetic and environmental factors [141]. Since gut
microbiota regulates both innate immune signaling and
certain physiological processes in CNS, it has also been
speculated to control the pathogenesis of MS [142].
EAE model, an autoimmune animal model induced by

CD4+ T cells, is widely used to investigate MS [143], and
studies have suggested that oral administration of anti-
biotics significantly reduces disease severity as it
enhances the recruitment and proliferation of Foxp3+

Tregs [144]. Germ-free mice have been reported to show
highly attenuated development of EAE, possibly due to
increased Treg cells, while IFN-γ and IL-17-producing
Th1 and Th17 cell population decreases compared to
those in conventionally maintained mice [145]. Further-
more, segmented filamentous bacteria, which induce
Th17 cell differentiation, are responsible for the develop-
ment of EAE [58, 144]. The symptoms are ameliorated
in GF mice harboring segmented filamentous bacteria
alone, accompanied by restored levels of Th17 cells in
CNS [58]. Potential for gut dysbiosis in disease-promot-
ing conditions has also been discussed in MS patients.
In a clinical study, in which 71 untreated MS patients
were compared with healthy controls, elevated levels of
specific taxa in microbiomes (e.g., Akkermansia mucini-
phila and Acinetobacter calcoaceticus) are observed in
MS patients. Transplantation of these bacteria from pa-
tients with MS into GF mice leads to the exacerbation of
EAE via increased proinflammatory T cell response and
weakened Treg response [146]. Similar results are ob-
tained in a study in which microbes from MS patients
with pathogenic components aggravated MS-related
symptoms in a transgenic mouse model [147]. Additional
studies have shown that microbial taxa of pediatric
patients with MS exhibit greater pro-inflammatory trend
when compared to that of healthy children, and depletion
of certain flora components in children with MS may be
linked to an increased risk of relapse [148, 149]. In
addition, treatment of MS by probiotic VSL3 induces
enrichment of specific microbial species in intestine and
inhibits peripheral inflammation mediated by monocytes.
The anti-inflammatory responses disappear after dis-
continuation of VSL3 [150]. Collectively, these findings
provide a basis for future studies pertaining to the mi-
croorganisms and pathways involved in the progression
of MS. Modification of microbiota or subtle dietary
changes could potentially contribute in the treatment
of MS.
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Parkinson’s disease
Parkinson’s disease (PD) is a common neurodegenerative
disorder which exhibits multifactorial motor symptoms,
including tremor, muscular rigidity, slowness of move-
ment, and gait abnormality [151]. Complex genetic and
environmental factors are involved in the initiation and
development of PD, which presents a major clinical chal-
lenge for disease treatment, as symptom relief becoming
less effective during disease progression [152]. Principal
pathology of PD is characterized by loss of dopaminergic
neurons in substantia nigra, accompanied with the
accumulation of α-synuclein and deposition of Lewy
bodies in remaining neurons [153]. Emerging evidences
suggests that α-synucleinopathy is initiated in enteric
nervous system before it occurs in CNS during the early
stages of disease, which is associated with some specific
digestive symptoms [154, 155]. This has been docu-
mented in mice transfected with human wild-type
α-synuclein, which exhibit constipation and impaired
colonic motor function [156]. In this case, signals in PD
might spread from gut to brain, and focus on the
early pathogenesis or symptoms in intestinal tract
may improve our understanding of the initiation of
this disease.
Neurological diseases are historically studied within

CNS; however, recent studies have implicated that per-
ipheral influences in the onset and progression of
diseases impact the brain [157]. Evidence from a study
of α-synuclein overexpressing (ASO) mouse model of
PD suggests a role of microbiota in the evolution of this
disease [158]. ASO mice under a germ-free environment
or treated with antibiotics show increased inhibition of
PD-associated neuropathology compared with the mice
from regular housing condition, whereas depletion of
gut microorganisms in young ASO mice inhibited the
progression of PD in adulthood. Furthermore, the
symptom-free state could be preserved by either
colonization via feces from conventional mice or oral
administration of bacterial metabolites to these germ-free
mice. In addition, activated expression of TLRs also con-
tributes to the inflammation and neurodegeneration in
PD. [159] Specifically, TLR4 is reported to interact with
misfolded α-synuclein, and trigger downstream microglial
reactions, production of proinflammatory cytokine, and
oxidative stress promotion [160]. Similarly, TLR2, another
molecule in TLRs family, has been found to be effective
agonist of extracellular α-synuclein released by neuronal
cells. Combination of TLR2 with α-synuclein promotes
downstream neurotoxic signals involving MyD88 and
NF-κB, resulting in the production of TNF and IL-1β
[161, 162]. Notably, patients with PD exhibit higher
exposure to gut microbiota due to their impaired intestine
function. Consistent interconnection between microbial
metabolism and TLRs induces elevated local inflammation

and dysfunction in clearance of α-synuclein deposition,
which synergistically contribute to the neurodegeneration
of PD. [159] Moreover, colonization of germ-free mice via
feces from PD patients led to more physical impairments
than those observed using feces from healthy controls
[158]. Further, a higher abundance of putative proinflam-
matory bacteria and reduced numbers of bacteria with
anti-inflammatory properties were observed in fecal
samples and sigmoid mucosal biopsies from patients with
PD, corresponding to the inflammation-related misfolding
of α-synuclein and pathology of PD in CNS [163]. Bac-
terial composition within the intestinal tract clearly
influences PD, and other studies have provided detailed
evidence for a role of gut dysbiosis in the disease. Severity
of symptoms, including postural instability and gait abnor-
mality, is associated with alterations in the abundance of
certain species of Enterobacteriaceae [164, 165]. Besides, a
reduction of Lachnospiraceae leads to a more severe
impairment of motor and nonmotor symptoms in PD
patients [165]. Considering the metabolites from gut
microbiota could reveal or regulate the physiological sta-
tus of both host and immune system, such as metabolites
SCFAs [166, 167], explicit relationships between micro-
biota, and the development of PD may provide us novel
biomarkers and mechanistic insights to this disease, and
antibiotics or probiotics targeting these relationships may
serve as an effective treatment strategy.

Alzheimer’s disease
Alzheimer’s disease (AD) is a chronic and irreversible
neurodegenerative disease and the most common form
of dementia in the elderly. Patients with AD display
serious CNS dysfunctions in learning, memory, and
behavioral issues, leading to serve disability in daily
activities [168, 169]. AD is characterized by loss of neu-
rons and progressive impairments in synaptic function,
accompanied with a deposition of amyloid-β (Aβ) pep-
tide outside or around neurons, together with an
accumulation of hyper-phosphorylated protein tau
inside cortical neurons [170–172]. Aβ overload and
tau aggregation foster microtubule destabilization, synap-
tic deficiency, disruption of Ca2+ homeostasis in neurons,
and ultimately neuronal apoptosis [173, 174]. Despite
recent advances in research, the mechanisms underlying
AD are unclear, and current therapies targeting Aβ only
provide modest symptom relief [175].
Previous studies have indicated that pathogenesis of

AD is associated with peripheral infectious origin, which
can cause neuroinflammation in CNS [176, 177]. Typical
characteristics of Aβ and tau deposition in AD are
directly linked with herpes simplex virus type 1 (HSV1)
infection in mice. Virus infection selectively upregulates the
expression of gene encoding cholesterol 25-hydroxylase
(CH25H), which is critical for modulation of both AD
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susceptibility and Aβ production [178, 179]. Further,
past studies have established the potential mecha-
nistic connections between AD pathology and other
types of infections, such as spirochaete, fungus, and
Chlamydia pneumoniae infections [180–182]. Like-
wise, recent studies have implicated gut microbiome as a
vital factor in the etiology of AD. Detection of metabolic
molecule from microbiota in cerebrospinal fluid of AD
patients, which is associated with biomarkers of AD
(phosphorylated tau and phosphorylated tau/Aβ42), indi-
cates the involvement of gut microbiota in pathogenesis of
AD [183]. In an Aβ precursor protein (APP) transgenic
mouse model, APP-mutant germ-free mice have
decreased cerebral Aβ amyloid pathology when compared
with APP mice in control conditions. Anti-Aβ effects
could be blocked by reconstruction of these germ-free
APP mice with microbiota from conventional mice [184].
Moreover, long-term broad-spectrum antibiotic treatment
also reduces Aβ deposition and improves the neuropatho-
logical phenotype of mice with AD [185]. When com-
paring fecal microbiomes and fecal SCFAs between AD
suffering mice and WT mice at different ages, dramatic ele-
vations in Verrucomicrobia and Proteobacteria, as well as
significant reductions of Ruminococcus and Butyricicoccus
are observed in AD mice, suggesting altered microbiota
composition and diversity, whereas the reduced level of
SCFAs further indicates the alterations in many meta-
bolic pathway [186]. Previous study has also shown that
activated microglia contribute to pathology of AD by
inhibiting Aβ clearance and increasing Aβ deposition
[187]. Elevated deposition of Aβ results in the release
of various proinflammatory mediators through micro-
glia, including iNOS, ROS, COX2, and NF-κB, thereby
causing neuroinflammation in AD pathogenesis [187].
Taken together, these results indicate that specific spe-
cies of gut microbiota activate Aβ signaling pathways
and contribute to the pathogenesis of AD. As the role
of more microbial taxa are evaluated, nutritional inter-
ventions or probiotics/antibiotics may become novel
therapeutic strategies to restrain the progression of AD.

Gliomas
Glioblastoma is one of the most malignant tumors with
dismal mortality rates [188]. Therefore, novel thera-
peutic agents and approaches are necessary to combat
this deadly disease. Recent studies demonstrate the
potential role of microbiome in immuno-oncology, with
particular emphasis on the immune checkpoints [189].
Further, commensal microbiota have been shown to play
therapeutic role in several tumor types [189, 190], with
an unexpected observation of an anti-tumor role of
Bifidobacterium in cooperation with innate immune sys-
tem and PD-L1 blockade. These studies demonstrate that
oral administration of Bifidobacterium in mice abolishes

tumor outgrowth by inducing pathways involving the ma-
turation of DCs, stimulation of tumor-specific CD8+ T
cells, recruitment of other immune cells, and activation of
type I interferon signaling [191]. Similarly, when analyzing
stool samples from patients with metastatic melanoma,
Bifidobacterium longum, Collinsella aerofaciens, and
Enterococcus faecium have increased abundance in sub-
jects that responded to a PD-1 inhibition with therapeutic
antibodies, suggesting that certain microbial taxa in gut
may provide supportive role to enhance the effects PD-1
blockade [192]. Furthermore, transplantation of fecal
materials from responders into germ-free mice has
been shown to improve the responses to PD-1 blockade
and control tumor growth [192]. Consistently, antibiotic
treatment before/during PD-1 blockade therapy impairs
the treatment efficacy and overall survival time in patients
with epithelial cancers [193]. Another recent study further
shows that application of gut microbiota from the
responders to GF mice has clear benefits by enhancing
checkpoint blockade in vivo [194]. Besides, dependence of
another critical immune checkpoint molecule CTLA-4 on
microbiome has been reported to further demonstrate
the influence of specific microbiota composition
(Bacteroides thetaiotaomicron and/or B. fragilis) to
the efficacy of CTLA-4 blockade therapy in mice and
patients, through elevated IL-12-dependent Th1 immune
responses [195].
Previous studies have clearly shown that the benefits

of both chemotherapy and radiation therapy on tumor
progression could be compromised by antibiotic treat-
ment. For instance, anti-cancer activity of an immunosti-
mulatory alkylating agent, cyclophosphamide, is limited
in antibiotic-treated tumor-bearing mice due to lack of
relevant Th1 and Th17 immune responses in spleen
[196]. Further studies confirm that the presence of key
bacterial species, Enterococcus and Barnesiella, is both
necessary and sufficient to mount effective immune
responses (such as induction of memory Th1 and patho-
genic Th17 responses as well as increases in tumor-spe-
cific CD4+ and CD8+ T cells) at tumor location, thereby
compensating for limited efficacy of cyclophosphamide
[197]. Total body irradiation (TBI) has been shown to ef-
ficiently control tumor recurrence by multiple mecha-
nisms and it maximizes the efficacy of adoptively
transferred CD8+ T cells. Interestingly, antibiotic treat-
ment or neutralization of serum LPS has been shown to
weaken the beneficial effects of TBI on tumor regres-
sion, while LPS administration to non-irradiated mice
enhances the number and function of transferred CD8+

T cells, indicating that microbiota facilitates the effects
of TBI via metabolite of LPS [198, 199]. Further, it has
been shown that CK (a metabolite of ginseng saponin) is
produced by intestinal bacteria after oral administration
of ginseng, which reduces the migration and invasive
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capabilities of glioma cells in vitro by inhibiting down-
stream SDF-1 and CXCR4 signaling [200]. Therefore,
based on the emerging evidences which show that specific
microbial taxa augment the effects of various therapeutic
modalities against tumors, we could speculate that micro-
biota could be used to maximize the effects of current an-
titumor approaches and could even be used as biomarkers
to predict prognosis and treatment responses in glioma
patients [201]. However, additional studies are required to
determine the detailed function of certain microbial com-
ponents for glioma treatment.

Conclusion
Due to complicated etiologies and lack of reliable bio-
markers in humans, effective treatment strategies for CNS
diseases have been of great interest. The concept of
gut-brain axis is being actively explored, and many studies
have confirmed that alterations in gut microbiota com-
position are associated with certain clinical conditions.
Existence of a biological link among microbiota, immune
signaling, and CNS indicates that both neurological and
immunological activities in brain could be determined
either directly by microbial metabolites or indirectly by
microbiota-derived systemic signals. The applications of
therapeutic modulators have already shown promising
results in various mood disorders, such as autism and
depression. However, as the details of gut-brain axis are
still unclear, it is critical for future studies to clarify spe-
cific mechanisms by which gut microbes contribute to the
progression or regression of certain pathological condi-
tions. These studies may provide a basis for advanced
therapeutic approaches, along with current therapeutic
modalities as well as the identification of novel
biomarkers, for early diagnosis and intervention of
CNS disorders.
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