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Norepinephrine enhances the LPS-induced
expression of COX-2 and secretion of PGE2 in
primary rat microglia
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Abstract

Background: Recent studies suggest an important role for neurotransmitters as modulators of inflammation.
Neuroinflammatory mediators such as cytokines and molecules of the arachidonic acid pathway are generated and
released by microglia. The monoamine norepinephrine reduces the production of cytokines by activated microglia
in vitro. However, little is known about the effects of norepinephrine on prostanoid synthesis. In the present study,
we investigate the role of norepinephrine on cyclooxygenase- (COX-)2 expression/synthesis and prostaglandin (PG)
E2 production in rat primary microglia.

Results: Interestingly, norepinephrine increased COX-2 mRNA, but not protein expression. Norepinephrine strongly
enhanced COX-2 expression and PGE2 production induced by lipopolysaccharide (LPS). This effect is likely to be
mediated by b-adrenoreceptors, since b-, but not a-adrenoreceptor agonists produced similar results. Furthermore,
b-adrenoreceptor antagonists blocked the enhancement of COX-2 levels induced by norepinephrine and b-
adrenoreceptor agonists.

Conclusions: Considering that PGE2 displays different roles in neuroinflammatory and neurodegenerative disorders,
norepinephrine may play an important function in the modulation of these processes in pathophysiological
conditions.

Background
Microglia, the innate immune cells of the brain, con-
stantly screen their microenvironment and transform
into an “activated” state in response to brain lesions, e.
g., toxic lesions or debris and degenerating neurons
[1,2] (for review see [3]). Once activated, microglia
secrete pro- and anti-inflammatory mediators such as
cytokines and prostaglandins (for review see [4]). In
vitro stimulation with lipopolysaccharide (LPS), the
endotoxin of gram-negative bacteria, results in the
secretion of neurotoxic and pro-inflammatory mediators.
LPS triggers the activation of microglial cells via the
anchored surface myeloid glycoprotein CD14 [5]. CD14
has also been found to bind to amyloid-b (Ab), the

major compound found in amyloid plaques in the brains
of patients with Alzheimer’s disease (AD) [6].
LPS is known to induce the production of cyclooxy-

genase-2 (COX-2) enzyme in microglial cells in vitro
[7-9]. COX-2 converts arachidonic acid released from
membrane phospholipids to prostaglandin (PG) H2.
PGH2 is then isomerized to PGE2 by terminal prosta-
glandin E synthases. COX-2 has emerged as a major
player in inflammatory reactions in the brain and
increased COX-2 expression has been considered to
contribute to neurodegeneration [10,11]. Elevated COX-
2 expression has been described in AD [12-17] and
COX-2 protein content in the hippocampus of AD
patients may correlate with the severity of dementia [18]
On the other hand, COX-2 has been suggested to play a
physiological role in the brain for being involved in neu-
ronal plasticity and synaptic transmission [19,20].
In recent years it has become evident that there may

exist a crosstalk between the autonomic nervous system
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and the immune system during inflammation [21,22].
The catecholamine norepinephrine (NE) is a classical
neurotransmitter with suggested immunomodulatory
properties. NE is released by neurons into the synaptic
cleft and may exert effects on glial cells that are in close
vicinity. NE binds to a- and b-adrenergic receptors, and
expression of a1-, a2-, b1- and b2-adrenegic receptors
have been identified on microglia [23-29].
An immunosuppressive role has been suggested for

NE in vitro since it attenuates LPS-induced microglial
production of tumour necrosis factor (TNF)a, interleu-
kin (IL)-1b, IL-6 and nitric oxide in vitro [24,30,31]. NE
has been shown to reduce microglia-induced neuronal
cell death [30,32].
Although it is known that NE has immunosuppressive

properties, information of NE’s effect on prostaglandins
is scarce. The aim of our study was to further investi-
gate the role of NE on eicosanoid production, namely
PGE2, in primary rat microglia.

Methods
Chemicals and reagents
L-(-)-Norepinephrine (+) bitartrate salt monohydrate
(A9512), LPS, the a1-adrenergic agonist L-phenylephrine
hydrochloride and the b2-adrenergic agonist terbutaline
hemisulfate salt were obtained from Sigma-Aldrich
(Taufkirchen, Germany). ICI 118,551, a selective b2-
antagonist, and CGP 20712A, a selective b1-antagonist,
the a2-receptor agonist clonidine, the a1-receptor
antagonist nicergoline, and the b1-/b2-receptor agonist
dobutamine were obtained from Tocris (distributed by
Biotrend, Cologne, Germany).
Cell culture
Primary microglial cell cultures were established from
cerebral cortices of one-day-old neonatal Wistar rats as
previously described [7,33]. Briefly, forebrains were
minced and gently dissociated by repeated pipetting in
Hank’s balanced salt solution. Cells were collected by
centrifugation, resuspended in Dulbecco’s modified
Eagle’s medium containing 10% fetal calf serum and anti-
biotics and cultured on 10-cm cell culture dishes (Falcon,
5 × 105 cells/plate) in 5% CO2 at 37°C. Medium was pre-
pared taking extreme care to avoid LPS contamination
[34]. Floating microglia were harvested from 10- to 14-
day-old mixed (astrocyte-microglia) primary cultures and
re-seeded into 35-mm cell culture dishes in fresh com-
plete medium to give pure microglial cultures (2 × 104

cells/dish). Microglial cultures were washed 1 h after
seeding to remove non-adherent cells. The purity of the
microglial culture was >98% as previously determined by
immunofluorescence and cytochemical analysis [34].
RNA extraction and RT-PCR analysis
Total RNA was isolated using the guanidine isothiocya-
nate method [35]. Two μg of total RNA was reverse

transcribed using M-MLV reverse transcriptase and ran-
dom hexamers (Promega, Mannheim, Germany). One μl
of the resulting cDNA was amplified using Taq DNA
polymerase (Promega), dNTPs (Invitek, Berlin, Ger-
many) and primers specific for rat COX-1 (forward, 5’-
CGG CCT CGA CCA CTA CCA ATG-3’; reverse, 5’-
TGC GGG GCG GGA ATG AAC T-3’, annealing tem-
perature 60°C, 30 cycles, amplicon size: 426 bp); rat
COX-2 (forward: 5’ TGC GAT GCT CTT CCG AGC
TGT GCT 3’, reverse: 5’ TCA GGA AGT TCC TTA
TTT CCT TTC 3’, annealing temperature 55°C, 35
cycles, amplicon size: 479 bp); rat S12 (forward: 5’-ACG
TCA ACA CTG CTC TAC A-3’, reverse: 5’-CTT TGC
CAT AGT CCT TAA C-3’, 56°C, 30 cycles, amplicon
size: 312 bp), that were designed using Primer Select
software (DNA Star Inc., Madison, WI) and synthesized
through an in-house facility (Dr. Gabor Igloi, Institute
for Biology III, Freiburg, Germany). All PCR amplifica-
tions included a final 10-min extension at 72°C. The
products were analyzed on a 2% agarose gel. Contami-
nation by genomic DNA was identified by substituting
total RNA instead of cDNA in the reaction mixture
using S12 primers.
Western blot analysis
After the respective experimental set up, microglial cells
were washed with phosphate-buffered saline (PBS) and
lysed in 1.3 × SDS- (sodium dodecyl sulfate-) containing
sample buffer without DTT or bromophenol blue con-
taining 100 μM orthovanadate [36]. Lysates were homo-
genized by repeated passage through a 26-gauge needle.
Protein contents were measured using the bicinchoninic
acid (BCA) method (kit obtained from Pierce, distribu-
ted by KFC Chemikalien, München, Germany). Bovine
serum albumin (BSA) was used as a protein standard at
concentrations ranging from 0.2 μg/μl to 4 μg/μl; the
optical density was read at 570 nm using a microplate
reader. Before electrophoresis, bromophenol blue and
DTT (final concentration, 10 mM) were added to the
samples. For COX-1 and COX-2 immunoblotting, 30 to
50 μg of protein from each sample was subjected to
SDS-PAGE (polyacrylamide gel electrophoresis) on a
10% gel under reducing conditions. Proteins were then
transferred onto a polyvinylidene fluoride (PVDF) mem-
brane (Millipore, Bedford, MA, USA) by semi-dry blot-
ting. The membrane was blocked for 1 or 2 h at room
temperature using Rotiblock (Roth, Karlsruhe, Germany)
or 5% blocking milk (BioRad, München, Germany),
before the overnight incubation at 4°C with the primary
antibody. Primary antibodies were goat anti-COX-1 goat
(M-20, Santa Cruz, Heidelberg, Germany) and anti-
COX-2 diluted 1:500 in Tris-buffered saline (TBS) con-
taining 0.1% Tween 20 (Merck, Darmstadt, Germany)
and 1% bovine serum albumin (BSA) and rabbit anti-
actin diluted 1:5000 (Sigma, St. Louis, MO, USA). After
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extensive washing (three times for 15 min each in TBS
containing 0.1% Tween 20), proteins were detected with
horseradish peroxidase (HRP)-coupled rabbit anti-goat
IgG (Santa Cruz Biotechnology Inc., Santa Cruz, CA,
USA, 1:100,000) or HRP-coupled donkey anti-rabbit (GE
Healthcare, Freiburg Germany, 1:25,000) using chemilu-
minescence (ECL) reagents (GE Healthcare). All western
blot experiments were carried out at least three times.
Enzyme immunoassay (EIA)
Supernatants were harvested, centrifuged at 10,000 × g
for 10 min, and levels of prostaglandin E2 in the media
were measured by enzyme immunoassay (EIA) (Assay
design, distributed by Biotrend, Cologne, Germany and
Cayman Chemicals, Ann Arbor, MI, USA, respectively)
according to the manufacturer’s instructions. Standards
from 39 to 2500 pg/ml were used; sensitivity of the
assay was 36.2 pg/ml.
Statistical analysis
At least three independent experiments were used for
data analysis. Original data were converted into %-values
of LPS control and mean ± S.E.M. were calculated.
Values were compared using t-test (two groups) or one-
way ANOVA with post-hoc Student-Newman-Keuls test
(multiple comparisons). Differences were considered sta-
tistically significant when p < 0.05.

Results
NE enhances LPS-induced production of COX-2 mRNA
and protein in primary rat microglial cells
We show here that NE dose-dependently enhanced LPS-
induced COX-2 protein levels in primary rat microglia
(Fig. 1A). No COX-2 protein levels were detected after
4 h stimulation with LPS (10 ng/ml) alone. Moreover,
NE alone showed no effect. Addition of 1-100 nM NE
to LPS-stimulated cells did not increase COX-2 protein
levels, although 100 nM NE in combination with LPS
already showed a tendency to increase COX-2 levels.
Significant upregulation of COX-2 immunoreactivity
was observed at doses of 1 to 10 μM NE in combination
with LPS. Analysis of western blots from three indepen-
dent experiments showed a 22- and 35-fold increase in
COX-2 immunoreactivity in rat primary microglial cells
(p < 0.001) using 1 and 10 μM NE, respectively, as com-
pared to 10 ng/ml LPS alone (Fig. 1B). On the other
hand, we did not observe any alterations in COX-1 pro-
tein levels after adding the same doses of NE along with
LPS (Fig. 1A).
Next, we investigated whether our findings on the

protein level were due to increased mRNA levels, using
qualitative PCR. COX-2 mRNA was marginally detect-
able in unstimulated microglial cells. In contrast to the
finding that NE alone did not influence COX-2 protein
levels, a potent induction of COX-2 mRNA expression

was observed after 2 h stimulation with NE alone, which
resulted in a dose-response upregulation starting with 1
nM that peaked at 10 μM NE (Fig. 1C). Addition of
LPS, 10 ng/ml, further enhanced the expression of
COX-2 mRNA (Fig. 1D). Thus, in agreement with the
effects observed on COX-2 protein levels, we found an
increase in COX-2 mRNA when microglial cells were
stimulated by both LPS plus NE.
Next we studied time kinetics in COX-2 mRNA and

protein synthesis after stimulation with 10 ng/ml LPS or
1 μM NE and the combination of both. At 2 h, a slight
increase in COX-2 immunoreactivity was detected when
microglia were treated with LPS plus NE, while there
was no change in COX-2 protein levels when the cells
were treated with LPS or NE alone (Fig. 2A). LPS plus
NE further increased COX-2 immunoreactivity signifi-
cantly at 4 and 8 h compared to LPS treatment alone (p
< 0.05). After 24 h, LPS alone reached the same immu-
noreactivity as the treatment of LPS plus NE (Fig. 2A
and 2B).
COX-2 mRNA upregulation was already observed at

30 min upon LPS plus NE treatment and reached its
maximum by 1 h. In LPS-only treated microglial cells
COX-2 mRNA expression levels reached a maximum
and the same expression level as LPS plus NE after 6 h.
In LPS only and LPS plus NE, COX-2 level did not
further increase and stayed at the same level after 24 h.
Interestingly, NE alone also led to an increase in COX-2
mRNA expression by 30 min and was still observed
after 8 h (Fig. 2C).
NE increases release of PGE2 by LPS-stimulated primary
microglial cells
We further investigated whether the augmentation of
COX-2 synthesis by NE in the presence of LPS is
accompanied by an increased release of PGE2, an impor-
tant product of the enzymatic activity of COX-2 (Fig. 3).
PGE2 was barely detectable in unstimulated primary
neonatal microglial cells. Treatment with NE, 1 μM
alone, did not lead to an increase in PGE2 over 24 h.
LPS, 10 ng/ml alone, significantly increased PGE2 con-
centration after 24 h (p < 0.05), whereas there was no
significant increase after 4 and 8 h stimulation with LPS.
We observed a significant increase in the secretion of

PGE2 after 8 h of stimulation with the combination of
LPS (10 ng/ml) and NE (1 μM) compared to unstimu-
lated cells (p < 0.05). At 24 h, LPS plus NE also showed
a significant elevation of PGE2 levels compared to treat-
ment with LPS alone (p < 0.001). The enhancement of
PGE2 induced by NE in LPS-stimulated microglia, but
not by NE alone, confirms the previous results in which
NE in combination with LPS further increased COX-2
immunoreactivity whereas NE alone did not increase
COX-2 protein levels.
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The NE-induced increase in COX-2 is mediated by
b-adrenoreceptors
Since microglial cells express a- and b-adrenoreceptors,
and NE activates G-protein-coupled receptors, we asked
which adrenoreceptor subtype mediates the increase in
COX-2 after stimulation with LPS in combination with
NE. Thus, we treated microglial cells with LPS, 10 ng/
ml, in combination with various adrenoreceptor agonists
(Fig. 4A). Co-treatment of LPS with the selective a1-
agonists phenylephrine only induced a modest increase
in COX-2 protein expression compared to LPS and NE
treatment, while clonidine, an a2-adrenergic agonist, did
not show any effect at all. In contrast, terbutaline and
dobutamine, b2-and unselective b-adrenergic agonists,
respectively, mimicked the effect of NE (Fig. 4A). Thus,
stimulation of microglial b1- or b2-receptors, or both,
seem to be required for the observed effect on COX-2

protein levels, suggesting that treatment with b-adrener-
gic antagonists should abolish the enhanced COX-2 pro-
tein synthesis. Indeed, the selective b1- and b2-receptor
antagonists CGP 20712A and ICI 118,551, respectively,
reduced COX-2 protein levels induced by the combina-
tion of LPS/NE (Fig. 4B). However, they were not able
to completely abolish COX-2 immunoreactivity (Fig.
4B). Nicergoline, an a1/a2-adrenoreceptor antagonist,
had no effect on COX-2 protein levels induced by NE/
LPS, further supporting the absence of role of a1/a2-
adrenoreceptors.
Finally, we treated LPS-stimulated microglial cells with

both b-adrenergic receptor agonists and antagonists (Fig.
4C). As shown, ICI 118,551 and CGP 20712A reduced
COX-2 expression in LPS- plus dobutamine-stimulated
cells. After stimulation with the b2-selective agonist ter-
butaline plus LPS, addition of the b1-receptor antagonist

Figure 1 Different concentrations of norepinephrine enhance the synthesis of COX-2 protein (A, B) and mRNA (C) in LPS-stimulated
primary neonatal microglial cells. Microglial cells were stimulated with different concentrations of norepinephrine (0.001 μM to 10 μM) and
LPS (10 ng/ml) for 4 hours. (A) A representative western blot against b-actin (42 kDa) and COX-2 (70 kDa) is shown here. (B) Quantitative
densitometric analysis of COX-2 protein expression normalized to b-actin control (n = 3). *P < 0.05, **P < 0.001 with respect to LPS control. (C,
D) Semi-quantitative PCR analysis of the effect of different concentrations of norepinephrine alone (C) and of norepinephrine plus LPS on COX-2
and COX-1 mRNA expression (D). [NE = norepinephrine].
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CGP completely abolished COX-2 expression. Low con-
centrations of ICI 118,551, however, did not alter COX-
2 expression levels, while at higher concentrations a
modest decrease was observed.

Discussion
In the present study, basal COX-2 expression in non-sti-
mulated rat primary neonatal microglia was not detect-
able, suggesting that either COX-2 is generated by de
novo synthesis in response to applied stimuli or, alterna-
tively, that basal levels do not reach the threshold of
immunoblot detection. NE alone induced COX-2
mRNA expression but did not affect COX-2 protein
synthesis. We suppose that the COX-2 mRNA induced
by NE is degraded before protein synthesis is initiated.
Alternatively, a second stimulus, such as LPS, is
required to set off translation of COX-2.

Different kinases are important in the regulation of
COX-2 in LPS-stimulated microglia [37], and it has
been demonstrated that NE increases the activity of
mitogen-activated protein kinases (MAPK) [38] as well
as transcription factors [39]. Kan et al. (1999) demon-
strated that, in neonatal rat cardiac myocytes, NE alone
increases the activity of MAPK and, although IL-1b
alone does not induce the same effect, the co-addition
of IL-1b and NE results in an enhanced MAPK activity
in comparison to the substances alone [38]. Salmeterol
and isoproterenol, b2- and non-selective b-adrenergic
receptor agonists, respectively, enhance the phosphoryla-
tion of p38 MAPK and extracellular signal-regulated
kinases (ERK) in peritoneal macrophages and
RAW264.7 [40,41]. Interestingly, pretreatment with iso-
proterenol decreases the release of TNFa, IL-12 and
NO in LPS-stimulated macrophages. On the contrary,

Figure 2 Time course of treatment with norepinephrine 1 μM alone, LPS 10 ng/ml alone, or a combination of norepinephrine 1 μM
plus LPS 10 ng/ml on the expression of COX-2 protein and mRNA (A-C). (A, B) Microglial cells were stimulated for 4, 8, and 24 hours. This
was followed by western blot analysis against b-actin (42 kDa) and COX-2 (70 kDa). A representative western blot is shown here (A). Quantitative
densitometric analysis of COX-2 normalized to b-actin loading control. *P < 0.05 with respect to LPS control. (C) Semi-quantitative analysis of the
effect of the different treatment groups on COX-2 mRNA expression at different time points (15 min to 24 hours). [NE = norepinephrine].
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isoproterenol reduces the release of these same media-
tors after PMA stimulation, indicating that the effect of
isoproterenol might depend on the stimulus [42].
Recently, Morioka et al. (2009) demonstrated that, in

rat spinal microglia, NE reduces phosphorylation of p38
MAPK, induced by ATP, via b1- and b2-receptors [43].
The deactivation of p38 would lead to a decrease in
COX-2 protein synthesis, since p38 is involved in COX-
2 mRNA stabilization [44]. As such, it is possible that
the observed increase in COX-2 mRNA may be due to
increased transcription or increased stability of mRNA
in rat microglia by activation of certain transcription
factors and/or kinases. That could explain the increase
in the COX-2 mRNA with incubation of cells with NE
alone, or the enhancement of COX-2 protein synthesis
when associated with LPS.
On the other hand, many post-transcriptional factors

contribute to the translation of mRNA, which might not
be affected by NE. This could explain the lack of effect of
NE on COX-2 protein synthesis. For example, it is known
that LPS induces the activation of the mammalian target
of rapamycin (mTOR) [45]. Activation of mTOR induces
translation of different mRNA through its downstream
targets such as the ribosomal p70S6 kinase and the initia-
tion factor 4E-binding protein 1 [46]. Although we did not
test this possibility, it seems feasible that NE per se cannot
activate the machinery responsible for the translation of
COX-2 in rat microglia, but potentiates protein synthesis
by increasing transcription or protein stability.

As shown before, LPS, 10 ng/ml, increases COX-2
mRNA and protein expression at 4 and 8 h, respectively
[8]. Co-stimulation with NE already at low concentra-
tions results in earlier and a markedly enhanced induc-
tion of COX-2 mRNA and protein levels. Similar to our
results, other groups have also shown that NE per se
does not increase protein synthesis, but drastically
increases the effect induced by LPS. In peripheral blood
monocytes and monocyte-derived macrophages, NE and
epinephrine alone only show a minor effect on matrix
metalloproteinase (MMP)-1 and MMP-9 production
[39]. However, a combination of the catecholamine with
LPS further enhances the increased production of
MMP-1 and MMP-9.
Next, we investigated whether the increased intracellu-

lar levels of COX-2 evoked by LPS plus NE causes ele-
vated levels of PGE2. In our experiments, NE plus LPS
further increased the levels of PGE2. Interestingly, after
24 h stimulation with NE plus LPS, COX-2 mRNA and
protein levels are similar to the increase observed in
LPS alone. However, the increase observed in PGE2 is
about three-fold higher in LPS plus NE than with LPS
alone. Thus, it is possible that the combination of LPS
and NE might induce the expression or increase the
activity of other enzymes involved in PGE2 synthesis,
such as phospholipase A2 and/or PGE synthases.
Dependent on the experimental setting, PGE2 can

exert either neuroprotective or neurodetrimental effects.
Agents reducing PGE2 synthesis in in vitro and in vivo
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Figure 3 Effect of norepinephrine on PGE2 concentrations at different time points (0 h, 4 h, 8 h, 24 h) was measured in the
supernatants of LPS-stimulated primary microglial cell cultures using EIA (n = 6). Data are depicted as means ± standard error of mean.
Statistical analysis was done using ANOVA with post hoc Newman-Keuls for the 4 different time points (*P < 0.001). [NE = norepinephrine].
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LPS 10ng/ml   - +   +   +   +  +   +   +  +  +   +    +
NE M             - - 1  10  - - - - - - - -
Phenylephrine M  - - - - 1  10   - - - - - -
Clonidine M     - - - - - - 1   10   - - - -
Dobutamine M  - - - - - - - - 1   10 - -
Terbutaline M  - - - - - - - - - - 1  10

A

LPS 10 ng/ml     - +    +     +    +      +      +    +      +
NE 1 M             - - +      +      +      +      +    +     +
Nicergoline M  - - - 1    10 - - - -
CGP 20712A M - - - - - 1     10   - -
ICI 118,551 M - - - - - - - 1    10

B

C

LPS 10 ng/ml    - +   +   +   +  + +   + +  +   + +
Dobutamine 1 M  - +    +   +   +   +   - - - - - -
Terbutaline 1 M   - - - - - - - +    +   +    +   +
CGP 20712A M - - 1   10  - - - - 1  10   - -
ICI 118,551 M - - - - 1   10 - - - - 1 10

COX-2
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COX-2
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COX-2
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Figure 4 Effect of different a- and b-adrenergic agonists and antagonists on COX-2 protein expression. Microglial cells were stimulated
with LPS 10 ng/ml and different adrenergic agonists/antagonists for 4 hours, followed by western blot analysis for COX-2 protein expression (70
kDa). (A) LPS-stimulated microglial cells were treated with different a- and b-adrenoreceptor agonists at two different concentrations (1 and 10
μM): a1-agonist phenylephrine; a2-agonist clonidine; b1/b2-agonist dobutamine; b2-agonist terbutaline. (B) LPS-stimulated microglial cells were
treated with different a- and b-adrenoreceptor antagonists at two different concentrations (1 and 10 μM): a1/a2-antagonist nicergoline; b1-
antagonist CGP 20712A; b2-antagonist ICI118, 551. (C) LPS-stimulated microglial cells were treated both with dobutamine or terbutaline and with
the two different b-adrenoreceptor antagonists ICI 118,551 or CGP 20712A. [NE = norepinephrine].
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models of chronic neurodegenerative diseases like Par-
kinson’s disease or AD have been demonstrated to be
neuroprotective due to their anti-inflammatory effects
[47-52]. On the other hand, exogenous PGE2 protects
neurons from LPS-induced cell death by reduction of
NO and reactive oxygen species [53]. Direct administra-
tion of PGE2 into the brain has also been shown to
reduce microglial activation and TNF-a expression in
brain parenchyma induced by intraperitoneal LPS injec-
tion [54]. In addition, PGE2 protects neurons in culture
from different types of noxious stimuli [29,55,56].
Localized inflammatory responses in the brain par-

enchyma have been associated with the pathogenesis
and progression of AD. Inhibition of neuroinflammation
has been identified as a potential therapeutic target
[57-60]. COX-2 expression is elevated in the AD brains
[14,18] and PGE2 is accumulated in the cerebrospinal
fluid of AD patients [61]. It was therefore reasonable to
hypothesize that inhibition of COX-2 may have a thera-
peutic potential in AD. Despite convincing evidence in
epidemiological studies on the prevention of AD
through long-term treatment with non-steroidal anti-
inflammatory drugs, most clinical trials have failed to
show beneficial effects [62-65], suggesting that either
the molecular target or the therapeutic window has
been missed.
PGE2 acts on four different receptors, EP1-EP4 [66], of

which microglia express three, namely EP1, EP2, and
EP3; the latter having been exclusively detected in acti-
vated microglia [67]. Microglial EP2 receptors are
known to enhance neurotoxic activities [10,50-52,68].
This would suggest that enhanced secretion of PGE2

through NE might increase microglial toxicity. However,
the role of PGE2 may be far more complex due to the
presence of other receptor subtypes on microglia. So far,
NE-mediated regulation of EP receptor expression on
microglia has not been studied.
In this study, we could show that the observed effect

of NE is mediated by b-adrenoreceptor agonists. This
corresponds to the findings of Minghetti and Levi, who
showed that the non-selective b-adrenergic agonist iso-
proterenol increases COX-2 protein and PGE2 synthesis
in microglial cells [8]. In our experiments, both b1- and
b2-receptors seem to mediate the enhanced effect of
COX-2 production. Our data also indicate a lack of
involvement of a-adrenoreceptors. The use of relatively-
selective b-adrenoreceptors allowed us to further con-
firm the participation of b-adrenoreceptors in the
enhancement of LPS-induced COX-2 expression. Based
on our data, both b-adrenoreceptors subtypes seem to
be involved. The antagonists used in this study,
CGP20712A (b1-antagonist) and ICI118,551 (b2-antago-
nist) are widely used to discern the role of b-adrenore-
ceptor subtypes [69,70]. Terbutaline is considered a

relatively selective b2-agonist, but it also binds to the b1-
adrenoreceptor [71]. As with any pharmacological agent,
these compounds are not 100% selective, therefore
future studies utilizing knockout animals will be needed
to fully clarify the role of distinct b-adrenoreceptor
subtypes.
We did not detect that stimulation of a-adrenorecep-

tors results in any significant increase in COX-2 protein
levels. Of note, stimulation of b-adrenoreceptors
increases levels of cAMP in microglial cells, mainly
through activation of the b2-adrenoreceptor [25]. Raised
intracellular cAMP levels are known to suppress activa-
tion of microglial cells [54,72,73]. Increased PGE2 levels
may in addition stimulate the microglial EP2 receptor,
which is linked to cAMP formation [74] and thereby
contribute to the inactivation of microglia. Other cell
culture experiments have shown that exogenous PGE2
results in decreased levels of pro-inflammatory cytokines
such as TNF-alpha and IL-12 in LPS-stimulated micro-
glia [75-77]. In concordance with these results, increased
cAMP levels via stimulation of b-adrenoreceptors inhi-
bits the production of macrophage inflammatory protein
(MIP)-1a, which is known to activate macrophages to
secrete pro-inflammatory cytokines [78].
Our data suggest that NE has a strong effect on

microglial inflammatory responses, suggesting that NE is
an active modulator of microglial activation. This may
be important in AD, a disease in which early loss of
noradrenergic locus coeruleus (LC) neurons has been
observed [79]. Depletion of LC neurons by injection of
the neurotoxin DSP4 increases the levels of inflamma-
tory mediators like iNOS, IL-1b and IL-6 [80].

Conclusions
Our study shows that NE increases LPS-induced COX-2
expression and PGE2 secretion by primary rat neonatal
microglia in vitro. These results shed new light on the
role of NE in CNS inflammation. NE via COX-2 and
PGE-2 induction may have a protective physiological
function rather than being purely detrimental. However,
further investigations in in vivo models, especially in
regard to PGE2 and COX-2, may help to clarify the
exact role of NE in neuroinflammation.
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