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Abstract
Background: Transplantation of neural progenitor cells (NPC) constitutes a putative therapeutic maneuver for use in
treatment of neurodegenerative diseases. At present, effects of NPC transplantation in Alzheimer's disease (AD) brain
are largely unknown and a primary objective of this work was to demonstrate possible efficacy of NPC administration in
an animal model of AD. The benefits of transplantation could involve a spectrum of effects including replacement of
endogenous neurons or by conferring neuroprotection with enhancement of neurotrophic factors or diminishing levels
of neurotoxic agents. Since chronic inflammation is a characteristic property of AD brain, we considered that
transplantation of NPC could have particular utility in inhibiting ongoing inflammatory reactivity. We have tested
intrahippocampal transplantation of NPC for efficacy in attenuating inflammatory responses and for neuroprotection in
beta-amyloid (Aβ1-42) peptide-injected rat hippocampus.

Methods: Spheres of neural progenitor cells were grown from dissociated telencephalon tissue of rat embryos. NPC
were infected with lentiviral vector green fluorescent protein (GFP) with subsequent cell transplantation into rat
hippocampus previously injected (3 d prior) with Aβ1-42 peptide or PBS control. Immunohistochemical analysis was
carried out (7 d post-NPC transplantation, 10 d post-peptide/PBS injection) for GFP, microgliosis (Iba-1 marker),
astrogliosis (GFAP marker), neuron viability (MAP-2 marker) and levels of the proinflammatory cytokine, TNF-α.

Results: Successful infection of cultured NPC with lentiviral vector green fluorescent protein (GFP) was demonstrated
prior to cell transplantation into rat hippocampus. In vivo, immunohistochemical staining showed migration of GFP-
positive cells, in a region of dentate gyrus between Aβ1-42/PBS injection site and NPC transplantation site, was increased
×2.8-fold with Aβ1-42 compared to PBS injection. Double immunostaining in peptide-injected brain indicated GFP
association with nestin and GFAP, but not MAP-2. Cell-specific immunostaining showed marked increases in microgliosis
and astrogliosis in Aβ1-42-injected brain (respective increases of ×4.3- and ×4.6-fold compared with PBS injection). NPC
transplantation significantly reduced microgliosis (by 38%) but not astrogliosis in peptide-injected hippocampus. The
proinflammatory cytokine TNF-α was elevated by 6.7-fold (peptide vs PBS injection) with NPC administration
attenuating levels of TNF-α (by 40%). Peptide-injected brain demonstrated neuronal loss (MAP-2 staining reduced by
45% vs PBS injection) with NPC transplantation effective in conferring neuroprotection (26% recovery of neurons).

Conclusions: These findings indicate efficacy for NPC transplantation in an animal model of AD with effects consistent
with cellular actions to attenuate inflammatory reactivity induced by intrahippocampal peptide injection.
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Background
Alzheimer's disease (AD) is a chronic neurodegenerative
disorder that in advanced stages is characterized by
increased levels of amyloid-beta (Aβ) peptide deposits,
neurofibrillary tangles, abnormalities in neuronal and
synaptic function and evidence for ongoing inflammatory
reactivity [1,2]. The changes in underlying brain processes
are manifest in a marked deterioration in memory and
cognition. Numerous risk factors such as aging are associ-
ated with, and exacerbate, the loss of function in AD brain
[3]. Importantly, the multiple processes and risk factors
contributing to the slow progression of AD pathology
compromise therapeutic strategies for treatment of the
disease.

Transplantation of neural stem cells (NSC) constitutes a
putative therapeutic maneuver for cell replacement in brain
damage due to their intrinsic properties of self-renewal and
capability for differentiation into different cell types includ-
ing neurons. However, evidence also suggests stem cell ther-
apy may confer neuroprotection by means other than cell
replacement including the enhancement of neurotrophic
factors [4] or by diminishing levels of putative neurotoxic
factors. In the latter case, recent work has indicated efficacy of
NPC may involve inhibition of inflammatory factors and
responses [5,6]. Overall, beneficial effects of stem cell
administration have been reported in a number of animal
models including multiple sclerosis [7], Parkinson's disease
[8] and stroke [9]. A recent study [10] has provided the first
report for use of stem cell therapy in AD with the finding that
transplantation improved cognitive performance in trans-
genic mice by elevation of brain-derived neurotrophic factor
(BDNF).

Since chronic inflammation is a critical facet of AD brain,
we reasoned that transplantation of neural progenitors
could serve as a feasible strategy to attenuate ongoing
inflammatory reactivity and thereby protect neurons. Fur-
thermore, capacity for neural progenitors to engage in
chemotactic activity has recently been reported [11,12], a
necessary requirement for increased mobility in response
to inflammatory factors. We have tested this hypothesis
by measuring migration of transplanted neural progenitor
cell (NPC) and effects of NPC transplantation on inflam-
matory responses mediated by microglia and astrocytes,
levels of the proinflammatory cytokine, TNF-α and neuro-
nal viability in an animal model of inflamed AD brain.
This model uses intrahippocampal injection of amyloid-
beta peptide (Aβ1-42) to induce marked inflammatory
reactivity with concomitant neuronal damage in rat brain
[13,14].

Methods
Neurosphere cultures
Spheres of neural progenitor cells were grown from disso-
ciated telencephalon tissue of 14 d Sprague-Dawley rat

embryos in neurobasal medium (GIBCO) containing B27
(GIBCO) supplement with 20 ng/ml basic fibroblast
growth factor (bFGF) (PeproTech), 10 ng/ml epidermal
growth factor (EGF) (PeproTech) and 10 ng/ml leukemia
inhibitory growth factor (LIF) (Chemicon). The proce-
dure of changing culture medium every 3 days results in
the formation of neurospheres [15].

Immunostaining of neurospheres
Neurospheres were plated on 12 mm round cover glass
(Deckglaser). Spheres were fixed in 4% paraformaldehyde
for 10 min, permeabilized in 0.1% Triton X-100 (Sigma) in
PBS for 5 min, blocked in 5% normal goat serum (NGS) in
phosphate buffered saline (PBS) for 1 hour, and incubated at
4°C overnight with the following primary antibodies: anti-
nestin (1:200; Chemicon), anti-vimentin (1:500; Sigma),
anti-microtubule associated protein-2 (MAP-2) (1:1000;
Chemicon), anti-glial fibrillary acidic protein (GFAP)
(1:100; Sigma), and anti-green fluorescent protein (GFP)
(1:1000; Invitrogen). The spheres were subsequently incu-
bated with anti-mouse and anti-rabbit secondary antibodies
conjugated to Alexa Fluor 488 and 555 (IgG, 1:1000; Molec-
ular probes) for 1 hour at room temperature. The spheres
were then incubated in 4',6-diamidino-2-phenylindole dihy-
drochloride (DAPI) (1:1000; Sigma) for 30 sec and cover-
slipped in polyvinyl alcohol mounting medium with
DABCO-antifade solution (Sigma). Control immunostain-
ing was performed by omission of the primary antibody. Flu-
orescent images were obtained from a Leica DMIRE2
deconvolution microscope using the software OpenLab 3.7.

Stereotaxic injection of fibrillar A 1-42
All experimental procedures were approved by the Univer-
sity of British Columbia Animal Care Ethics Committee,
adhering to guidelines of the Canadian Council on Ani-
mal Care. Full-length peptide (Aβ1-42; California Peptide)
was prepared as previously described [16,17]. The com-
pounds were first dissolved in 35% acetonitrile (Sigma)
and further diluted to 500 μM with incremental additions
of PBS with vortexing. The peptide solution was subse-
quently incubated at 37°C for 18 hr to promote fibriliza-
tion and aggregation and stored at -20°C.
Intrahippocampal injection of Aβ1-42 was performed as
previously described [13,14]. In brief, male Sprague-Daw-
ley rats (Charles River) weighing 280-300 g were anesthe-
tized (ketamine/xylazine, i.p.) and placed in a stereotaxic
apparatus (David Kopf Instruments, Tujunga, CA) and
received unilateral injection of 2 nmol Aβ1-42 at the fol-
lowing coordinates: anteriorposterior (AP): -3.3 mm,
mediallateral (ML): -1.6 mm, (dorsoventral) DV: -3.6
mm, from bregma [18]. Control animals received injec-
tion of PBS at these coordinates.

Transplantation of GFP labelled neural progenitor cells
Dissociated neural progenitor cells in Hank's balanced
salt solution were transduced with lentiviral vectors carry-
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ing an enhanced green fluorescent protein (pHR'-CMV-
GFP). The efficiency of GFP expression levels was quanti-
fied in vitro. Approximately 5 × 105 NPCs were seeded and
infected with 3-fold higher titre lentivirus (compared with
seeded cell density) in 12 mm converslips in vitro. Three
days after infection, NPCs were fixed with 4% PFA and
placed under a fluorescence microscope for GFP measure-
ment: the results showed approximately 40% of NPCs
expressed GFP expression.

The transduced neural progenitor cells (NPC-GFP; 5 ×
104, 3 μl) were then stereotactically transplanted (0.20 μl/
min) into the hippocampus. Site of transplantation was
chosen close to the peptide injection site at the following
coordinates from bregma (AP: -3.3 mm, ML: -1.8 mm,
DV: -3.2 mm) as previously described [19]. For control
cell graft, dead NPC were prepared by repeated cycles of
freezing and thawing and used as control graft [20]. Trans-
plantation was performed three days after PBS and Aβ1-

42injection. Immunosuppressive agents were not used in
the transplantation protocols due to the possibility of
anti-inflammatory effects of the agents that could compli-
cate immune-modulatory actions of NPC in vivo.

Immunohistochemical analysis
Seven days after NPC transplantation, rats were anesthe-
tized and killed by transcardiac perfusion of saline, fol-
lowed by 4% paraformaldehyde. Brains were then
removed, post-fixed, cryoprotected, and sectioned into 40
μm throughout the hippocampus [14]. Free-floating sec-
tions were processed for immunohistochemistry as
described previously [14]. Briefly, sections were permea-
bilized in 0.2% Triton X-100, blocked with 10% NGS, and
incubated overnight at 4°C with the primary antibodies:
anti-GFP (1:1000; Invitrogen), anti-ionized calcium-
binding adapter molecule 1 (Iba-1, 1:1000; Wako Chem-
icals), anti-GFAP (1:1000; Sigma), anti- tumor necrosis
factor-alpha (TNF-α, 1:200; Cedarlane Laboratories Ltd),
and anti-MAP-2 (1:500; Sigma). Sections were incubated
with secondary antibodies for 1 hour at room tempera-
ture, mounted on Superfrost/Plus microscope slides
(Fisher Scientific), and coverslipped. For immunostaining
controls, primary antibodies were omitted from the stain-
ing procedures. For double immunofluorescence staining,
free-floating sections were incubated overnight at 4°C
with primary antibody to GFP (1:1000; Invitrogen) with
nestin (1:500; Chemicon), GFAP (1:1000; Sigma), or
MAP-2 (1:500; Sigma) and incubated for 1 hr with a mix-
ture of Alexa Fluor-conjugated 488 anti-rabbit IgG (1:100;
Molecular Probes) and Alexa Fluor 594-conjugated anti-
mouse IgG (1:100; Molecular Probes). Immunofluores-
cence images were examined under a Zeiss Axioplan 2 flu-
orescent microscope (Zeiss) using a DVC camera
(Diagnostic Instruments) with Northern Eclipse software
(Empix Imaging) and analyzed for colocalization of stain-
ing using National Institutes of Health Image J.

Cell-associated immunostaining
The extents of microgliosis (Iba-1 marker), astrogliosis
(GFAP marker) and TNF-α immunoreactivity (ir) induced
by intrahippocampal Aβ1-42 or control PBS injections,
were evaluated by measuring the marker pixel intensities
from five hippocampal sections [14,21]. Immunostaining
was done over the specific areas of dentate gyrus, molecu-
lar layer (ML) and granule cell layer (GCL). The immunos-
tained section images were digitized and analyzed using
the image analysis program NIH version 1.57 (Wayne
Rasband, NIH). The overall neuronal viability was
assessed by measuring the ir of MAP-2 staining in the ML
and GCL of the hippocampus. All quantitative analyses
were performed in a blinded manner.

Statistical analysis
All data are expressed as means ± SEM. Statistical signifi-
cance of differences for group comparisons was assessed
using analysis of variance followed by Bonferroni's post
hoc test or Student's t test. Significance was set at p < 0.05.

Results
Patterns of distribution and differentiation of 
transplantedNPC, in vivo
Initial studies demonstrated that cultured NPC expressed
characteristic markers for undifferentiated stem cells
including nestin and vimentin; NPC also expressed the
astrocytic marker, GFAP but not neuronal MAP-2 (data
not shown). As shown in Fig. 1A, successful transduction
of lentiviral vector-GFP was demonstrated in cultured
NPC prior to cell intrahippocampal transplantation.
Transplantation of GFP-labeled NPC into the dentate
gyrus was carried out 3 days subsequent to intrahippoc-
ampal injections of control PBS or Aβ1-42 (at 2 nmol).
Immunohistochemical analysis was carried out at 7 d fol-
lowing NPC transplantation (10 d post-Aβ1-42/PBS injec-
tion). Representative GFP immunostaining, in the
molecular and granule cell layers (ML and GCL), indi-
cated increased numbers of NPC in the vicinity of Aβ1-42
(right panel, Fig. 1B), compared with PBS (left panel, Fig.
1B), injection site. In order to assess dispersion and net
migration of NPC from the site of transplantation, immu-
noreactivity (ir) of GFP (+)ve cells was measured in
regions between the sites of peptide/PBS injection and
NPC transplantation. The results (Fig. 1C) demonstrated
considerably increased GFP ir in these areas in Aβ1-42-
injected, relative to PBS-injected, hippocampus. Overall,
area density of GFP ir was increased by ×2.8-fold with
peptide, compared with PBS, injection.

Undifferentiated NPC exhibit a number of cell-specific
properties and markers such as nestin. We examined for
expression of characteristic properties of transplanted
cells in vivo in peptide-injected hippocampus. Representa-
tive staining patterns of GFP with the different cellular
markers (nestin, GFAP and MAP-2) are presented in Fig. 2.
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Results from double-immunostaining analysis demon-
strated GFP-labeled cells to express nestin and GFAP (Fig.
2, upper and middle panels). Overall, we found in excess
of 90% of NPC showed expression of both nestin and
GFAP. However, no evidence for MAP-2 colocalization
with GFP was found in Aβ1-42-injected hippocampus (Fig.
2, lower panels). The lack of MAP-2 association with GFP
ir suggests that with short term transplantation little or no
NPC differentiated into neurons.

Effect of NPC on A 1-42-induced inflammatory reactivity
The results shown in Fig 1 indicate NPC migration in
response to intrahippocampal Aβ1-42-injection. Since
microgliosis and astrogliosis are upregulated after peptide
injection, gliosis could be modulated in the presence of
NPC grafting. To examine this point, the effects of 7 d
NPC transplantation on microglial and astrocyte inflam-
matory responses and levels of the proinflammatory
cytokine, TNF-α were examined in five animal groups;
Aβ1-42 or PBS injected rat hippocampus, Aβ1-42 plus NPC,
Aβ1-42 plus dead NPC and NPC alone; PBS served as a con-
trol for peptide injection and dead NPC were used as a
control for NPC.

Representative immunostaining for microglia (Iba-1
marker), localized to areas between injection (Aβ1-42 or

PBS) sites and NPC transplantation site, is shown for the
different experimental groups (10 d post-Aβ1-42/PBS injec-
tion) in Fig. 3A (upper panels). Peptide-injected brain
demonstrated a considerably elevated Iba-1 ir compared
with PBS-injection. NPC transplantation in Aβ1-42-
injected animals showed efficacy in reducing extents of
Iba-1 ir, however, transplantation of dead NPC with pep-
tide was ineffective in reducing microglial proliferative
responses. NPC transplantation alone showed a pattern of
Iba-1 ir similar to PBS control. Quantification of data is
presented in Fig. 3B (left bar graph). Overall, microgliosis
(measured as area density of Iba-1 ir in ML/GCL) was
increased ×4.3-fold in Aβ1-42, relative to PBS, injected
brain. Transplantation of NPC in peptide-injected ani-
mals significantly reduced microgliosis (by 38%) com-
pared with Aβ1-42-injected animals receiving no
transplantation. Levels of Iba-1 ir were not significantly
altered with application of dead NPC in peptide-injected
animals. NPC transplanted animals, in the absence of
peptide administration, showed low extents of microglio-
sis.

Representative immunofluorescent staining for GFAP, in
the same regions used for analysis of microgliosis, is
shown in Fig. 3A (middle panels) for the different animal
groups. Peptide-injected brain exhibited an increased
GFAP ir relative to PBS control. Interestingly, levels of

GFP-labelled NPC in vitro and diffusion of GFP (+)ve NPC in vivoFigure 1
GFP-labelled NPC in vitro and diffusion of GFP (+)ve 
NPC in vivo. (A) GFP staining of cultured NPC. (B) Repre-
sentative immunostaining for GFP (+)ve NPC in molecular 
(ML) and granule cell (GCL) layers of dentate gyrus for PBS 
and Aβ1-42-injected rat brain, scale bar is for 100 μm. The site 
of PBS or Aβ1-42 injection is indicated by a red asterisk; the 
location of NPC transplantation is indicated by a yellow 
asterisk. (C) Quantification of GFP ir in region between site 
of injection (Aβ1-42 or PBS) and site of NPC transplantation 
(N = 4 animals/group, * denotes p < 0.05).

Expression of markers in injected NPCFigure 2
Expression of markers in injected NPC. Representative 
double staining for GFP association with nestin (upper panel), 
GFAP (middle panel) and MAP-2 (bottom panel), scale bar = 
10 μm.
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astrogliosis appeared relatively unchanged in Aβ1-42-
injected rats receiving NPC transplantation. GFAP ir in
animals receiving transplantation alone was similar to
marker ir with PBS control injection. Quantification of
data (Fig. 3B, middle bar graph) showed astrogliosis to be
significantly increased (×4.6-fold) in peptide, relative to
PBS, injected rat brain. Although a small decrease in GFAP
ir was measured (14%) with NPC transplantation in pep-
tide-injected brain, this effect was not significant. Extents

of GFAP ir were not significantly different between ani-
mals receiving Aβ1-42 and Aβ1-42 + dead NPC or between
groups administered PBS injection and ones receiving
NPC transplantation alone.

Expression of TNF-α was minimal in PBS-injected hippoc-
ampus with high expression of the cytokine evident in
peptide-injected brain (Fig. 3A, lower left panels). Trans-
plantation of NPC, but not dead cells, was highly effective

Effects of NPC transplantation on inflammatory reactivityFigure 3
Effects of NPC transplantation on inflammatory reactivity. (A) Representative staining for microglial responses (Iba-1 
marker, upper panels), astroglial responses (GFAP marker, middle panels) and levels of TNF-α (lower panels) in GCL and ML 
following 10 d intrahippocampal injections of PBS/Aβ1-42 and 7 d transplantation of NPC/dead NPC. The animal groups (panels, 
left to right) are for PBS, Aβ1-42, Aβ1-42 + NPC, Aβ1-42 + dead NPC and NPC alone, scale bar represents 100 μm. (B) Quantifi-
cation of data for Iba-1 (left bar graph), GFAP (middle bar graph) and TNF-α (right bar graph) for the different animal groups 
(N = 5 animals/group, * denotes p < 0.05 compared with PBS, # denotes p < 0.05 compared with Aβ1-42).
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in attenuating expression of TNF-α in peptide-injected
hippocampus. NPC transplantation alone had no effect to
alter levels of the cytokine compared to PBS control. Over-
all, expression of TNF-α in ML/GCL was increased ×6.7-
fold in Aβ1-42, compared with PBS, injected hippocampus
(Fig. 3B, right bar graph). Transplantation of NPC into
peptide-injected brain significantly reduced levels of the
pro-inflammatory cytokine, by 40%, compared with Aβ1-

42 injection alone. No significant differences in TNF-α ir
were measured between peptide and peptide plus dead
NPC animal groups or between PBS injected, and NPC
transplanted, brain.

Effect of neural progenitors on A 1-42-induced neuronal 
injury
A critical objective of this work was to determine efficacy
of NPC transplantation on neuronal viability. The region
of study was the same as for assessment of NPC migration
and gliosis, localized to areas between injection and trans-
plantation sites. Representative high magnification pat-
terns of immunostaining for neurons (MAP-2 marker) are
presented for PBS and Aβ1-42 injected hippocampus (Fig.
4A). The results indicate a considerable loss of MAP-2
(+)ve neurons with Aβ1-42, compared to PBS, injection
(Fig. 4A, left panels). NPC transplantation in peptide-

injected animals (Fig. 4A, second panel from right) was
effective in attenuating the loss of neurons. Dead NPC
were ineffective when applied in peptide-injected brain
(data not shown). The control NPC graft alone (Fig. 4A,
right panel) presented a similar pattern of MAP-2 ir as
found with PBS injection. Overall (N = 5 animals/group),
MAP-2 ir in ML and GCL was diminished by 45% in Aβ1-

42, relative to PBS, injected animals (Fig. 4B). Animals
receiving NPC transplantation showed a significant
(26%) increase in numbers of MAP-2 (+)ve neurons com-
pared to peptide-injected animals not receiving NPC treat-
ment. Levels of MAP-2 ir were not significantly different
between Aβ1-42 alone and Aβ1-42 plus dead NPC or
between PBS-injected and NPC-transplanted animals.

Discussion
The primary objective of this study was to provide evi-
dence for the potential clinical utility of NPC transplanta-
tion in AD brain. The major findings from the work are
that NPC transplantation significantly inhibits inflamma-
tory reactivity and provides neuroprotection in the Aβ1-42-
injected rat hippocampus. The results constitute the sec-
ond report of beneficial effects of stem cell treatment in
AD; a recent study has demonstrated improvement in cog-
nitive behaviour in transgenic animals with effects attrib-

Effects of NPC transplantation on neuronal viabilityFigure 4
Effects of NPC transplantation on neuronal viability. (A) Representative high magnification of MAP-2 ir in GCL and ML, 
scale bar is for 20 μm. Animal groups (panels left to right) are for PBS, Aβ1-42, Aβ1-42 + NPC and NPC alone. (B) The bar graph 
presents quantification of MAP-2 ir in GCL/ML (N = 5 animal groups, * denotes p < 0.05 vs. PBS, # p < 0.05 vs. Aβ1-42).
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uted to increased levels of hippocampal BDNF [10]. As
discussed below, our data showing correlation between
inflammatory reactivity and neuronal viability support
the possibility that NPC actions to attenuate inflamma-
tory responses may have utility in reducing neuronal dam-
age in inflamed AD brain.

We found that cultured NPC, isolated from rat brain,
exhibited a spectrum of characteristic features of undiffer-
entiated stem cells including expressions of nestin, vimen-
tin and GFAP. Efficient transduction of the cells with GFP
was demonstrated for the cultured NPC prior to their in
vivo transplantation into rat hippocampus at 3 d follow-
ing intrahippocampal injections of PBS control or Aβ1-42.
At 7 d following NPC transplantation (10 d after Aβ1-42 or
PBS), immunohistochemical analysis showed higher dis-
persed GFP ir between sites of injection and transplanta-
tion with peptide, relative to PBS, injection. These results
are consistent with Aβ1-42 injection stimulating a migra-
tion of NPC from transplantation to injection site. How-
ever, over the whole hippocampus we observed no
evident differences between GFP ir with peptide or PBS
injection suggesting that NPC survival was not a factor in
our experiments. Double staining in vivo showed promi-
nent immunoreactivity of GFP, colocalized with progeni-
tor cell nestin and GFAP, suggesting a NPC phenotype as
undifferentiated cells. No evidence for NPC neuronal dif-
ferentiation was evident (marker MAP-2), a result which
could reflect the relatively short duration of NPC grafting
employed in this work.

We conclude migration of NPC from sites of transplanta-
tion to sites of injection was enhanced in peptide-injected,
compared to PBS-injected, hippocampus. These findings
would be consistent with the presence of chemotactic
stimulatory signals which increase NPC mobility in pep-
tide-injected brain. The initiating stimulus for induction
of increased NPC migration could be due to direct depo-
sition of Aβ1-42 or indirectly due to signals from microglia
(see below) that have been activated by peptide. In the lat-
ter case, we have documented that injection of Aβ1-42 into
dentate gyrus is a potent stimulus for induction of micro-
glial chemotactic responses mediated by a specific recep-
tor for vascular endothelial growth factor (VEGF) [21].
Interestingly, recent work has reported stromal cell
derived factor-1 and its receptor CXCR4 as modulators of
progenitor cell migration in the dentate gyrus [11,12,22].

Intrahippocampal injection of Aβ1-42 was associated with
considerable increases in microgliosis and astrogliosis
compared with PBS control. Transplantation of NPC after
Aβ1-42 injection significantly inhibited microgliosis, but
not astrogliosis, in proximity to peptide injection site.
Microgliosis was not altered with dead NPC administered
to peptide-injected hippocampus and NPC transplanta-

tion alone was associated with similar levels of gliosis as
for PBS injection. Cytokine levels are enhanced in AD
brain [23] and our results showed elevated TNF-α, a pro-
inflammatory cytokine with autocrine function in micro-
glia [24], in Aβ1-42-injected hippocampus. Administration
of NPC, but not dead progenitor cells, attenuated levels of
TNF-α. As discussed below, the effects of NPC grafting to
inhibit microgliosis and levels of TNF-α may be corre-
lated.

The injection of Aβ1-42 was associated with a loss of neu-
ronal viability, compared with PBS control injection, con-
sistent with previous findings [14,16,17]. Importantly,
transplantation of NPC, but not dead cells, was effective
in diminishing loss of neurons in peptide-injected brain.
Although underlying neuroprotective mechanisms are not
well understood, this result could be linked with the find-
ing that NPC transplantation was efficacious in attenuat-
ing microgliosis with no significant actions to alter
astrogliosis. One possibility to account for effects of NPC
on microglial responses is that peptide-induced activation
of microglia increases their production of chemokines
including monocyte chemoattractant protein-1 (MCP-1)
[25] and interleukin-8 (IL-8) [26]. In this event preferen-
tial migration of NPC to areas exhibiting microglial prolif-
erative responses may follow. Increased migration of stem
cells induced by microglia [27], and specifically by the fac-
tor MCP-1 [28], have been reported, in vitro. Subsequent
NPC release of neurotrophic factors [10] could then
inhibit microglial activation by blocking cell-specific
inflammatory factors such as major histocompatibility
class II [29]. Since Aβ-stimulated microglia are potent pro-
ducers of TNF-α [24], NPC-mediated effects to decrease
microglial activation would be consistent with the dimin-
ished levels of the pro-inflammatory cytokine as found
following NPC grafting. Indeed, our results demonstrated
very similar extents of reductions (about 40%) in micro-
gliosis and levels of TNF-α with NPC transplantation. Pre-
vious studies have suggested that pharmacological
maneuvers that inhibit microglial activation can attenuate
neuronal damage in animal models of AD [13,21]. Over-
all, our findings are consistent with an enhanced migra-
tion of NPC in response to signals from peptide-activated
microglia with NPC releasing factors which in turn act to
inhibit microglial inflammatory reactivity. At present,
however, the specific NPC-dependent factors coupled to
reduction in inflammatory responses and neuroprotec-
tion have not been determined.

Our results, together with those reported in [10], provide
a proof of principle that stem cell therapy could be effica-
cious in AD. A number of questions need to be addressed
in AD animal models including the nature of microglial
signals which mediate NPC migration and NPC-derived
factors which modify microglial activation and inflamma-
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tory responses. The production and release of growth fac-
tors other than BDNF [10] by NPC could also contribute
to increased neuronal viability and enhanced cognition.
Another unresolved question is the possibility that NPC
could also directly differentiate into functional neurons in
diseased brain suggesting the utility of future work in
using longer durations of NPC transplantation in AD ani-
mal models.

Conclusions
It must be noted that any benefits in applying stem cell
therapy as a treatment in AD are confounded by a number
of complex issues including the involvement of multiple
factors in disease pathology and the presumed loss of neu-
ronal and synaptic viability in widespread regions of
affected brains. Nevertheless, our data are noteworthy in
demonstrating neuroprotective efficacy for NPC in an ani-
mal model of AD which likely emphasizes effects of
inflammatory activity [30]. Although effects of NPC trans-
plantation to enhance neuronal viability were modest, it
is reasonable to assume that increased levels of neuropro-
tection could be conferred with different transplantation
protocols including use of longer times and higher doses
of NPC. Overall, our findings taken in association with
recent work in transgenic mice [10], suggest that NPC
transplantation represents a novel and plausible approach
warranting extensive testing in AD animal models.
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