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Abstract
HIV-1-associated dementia remains a common subacute to chronic central nervous system
degeneration in adult and pediatric HIV-1 infected populations. A number of viral and host factors
have been implicated including the HIV-1 120 kDa envelope glycoprotein (gp120). In human post-
mortem studies using confocal scanning laser microscopy for microtubule-associated protein 2 and
synaptophysin, neuronal dendritic pathology correlated with dementia. In the present study,
primary human CNS cultures exposed to HIV-1 gp120 at 4 weeks in vitro suffered gliosis and
dendritic damage analogous to that described in association with HIV-1-associated dementia.

Introduction
HIV-1-associated dementia (HAD) is a late, subacute to
chronic dementia characterized by a progressive and
severe decline in cognitive and motor function. HAD
remains a major debilitating consequence of HIV-1 infec-
tion. It is an independent risk factor for death from AIDS
and the most common form of dementia in young adults
worldwide [1-5]. Evidence of a reduction in the incidence
of HAD [6,7] and reports of cognitive improvement in
cases of mild dementia with highly active antiretroviral
therapy (HAART) have been presented [8]. Other studies
have failed to identify a lower incidence of HAD post-
HAART and a number of experts note the potential for a
changing tempo of HAD from a precipitous dementia to
one with a more protracted course and greater incidence
in patients with relatively preserved CD4 counts [3,4,8]. It
is premature to accurately predict how HAART will affect
the incidence of HAD in the long term. HAART clearly
does not afford complete protection and the potential for
an increase in the prevalence of HAD has been raised by
many [2,3,6,8-11].

HIV-1 associated neuronal damage has been characterized
with evidence for both cytocidal and subcytocidal inju-
ries. Evidence of loss of large neurons in the orbitofrontal,
temporal and parietal regions [12] has been demonstrated
in association with HAD. Other investigations have failed
to demonstrate a correlation between neuronal loss and
HAD [13].

Studies of HIV-1 associated neuronal damage using syn-
aptic and dendritic markers [14] have shed additional
light on the nature of the neuronal injury in HAD. Cases
with severe HAD suffered a 40% loss of dendritic area in
frontal cortex and a 40–60% loss of dendritic spine den-
sity in comparison with non-demented controls [12]. It
was suggested that disruption of post-synaptic elements,
characterized by sinuous, shortened, and vacuolated den-
drites may be the primary lesion leading to the reduction
in synaptic density and the development of dementia
[14]. These and subsequent studies suggested that
decreases in microtubule associated protein (MAP2) and
synaptophysin (SYN) immunoreactivity may be more
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sensitive markers of neuronal injury [15] perhaps identi-
fying a more subtle primary injury.

The HIV-1 envelope glycoprotein gp120 has been linked
to the pathogenesis of HAD from several lines of evidence.
Both whole virus and gp120 alone have been shown to be
toxic to murine, avian and human CNS cultures [16,17].
Individual studies provided evidence that gp120 acts syn-
ergistically with NMDA receptor agonists [18]. HIV-1 neu-
rotoxicity was blocked in vitro by anti-gp120 antibodies
but not by anti-CD4 antibodies [17] indicating that its
toxicity was not dependent on CD4 receptor binding. Sev-
eral groups have demonstrated that neurotoxicity associ-
ated with gp120 exposure may involve chemokine
receptor activation [19-23] and may be further influenced
by Apolipoprotein-E genotype [24]. Hippocampal neu-
rons in mixed murine cultures are protected from gp120
by estrogenic steroids [25] while corticosterone exacer-
bates the gp120 inhibition of glutamate uptake [26].

Most evidence supports the theory that gp120 neuronal
toxicity is largely mediated through its interactions with
non-neuronal cells (microglia/monocytes and astrocytes)
as reviewed by Kaul et al. and Scorziello et al [3,27]. Acti-
vated microglia release compounds such as nitric oxide,
proinflammatory cytokines and glutamatergic excitotox-
ins, which can lead to neuronal membrane destablization
and [28-32]. In point of fact, conditioned media from
gp120-treated microglia was shown to be neurotoxic to
murine hippocampal cultures [33]. The ability of gp120
to cause the upregulation of inducible nitric oxide syn-
thase has been suggested in several studies [34,35] includ-
ing our own (Walsh et al.: Anhoxidant protection from
HIV-1 gp120-induced neuroglial toxicity. J Neuroinflamin
2004, 1:8). Furthermore, studies have shown that gp120
increases free radical generation, impairs antioxidant
defences and increases lipid peroxidation in cultures [36].
The alteration of cell cycle protein expression has recently
been shown to be associated with neuronal damage
caused by HIV [37].

The mechanism(s) of neuronal damage in this setting
remains controversial and there are few human models
available in which to study this human-specific disease.
Gliosis and neuronal dendritic injury have been well char-
acterized in association with HAD in post-mortem studies
and the present studies were undertaken to derive a
human culture system in which to study the pathogenesis
of these alterations. We report the findings of gliosis and
neuronal dendritic injury in primary mixed human CNS
cultures exposed to recombinant gp120. This provides an
additional tool for the study of HAD pathogenesis.

Materials and methods
Human primary CNS cultures
Human CNS tissue cultures were initiated from post-mor-
tem 16 to 18 week gestational age forebrain samples sub-
mitted to the Department of Pathology, London Health
Sciences Centre following institutional guidelines and
Research Ethics Board approval. The tissue was dissected
in fresh Dulbecco's Modified Eagle Medium, centrifuged
and resuspended in a serum-free and pyruvate-free
medium as previously described [38,39]. Suspension cul-
tures were initiated at a density of 5 × 106 cells/cm3 in T-
75 flasks (resulting in free-floating neuroglial aggregates).
Monolayer cultures (for confocal microscope analysis)
were plated at a concentration of 1 × 106 cells/cm3 onto
poly-ornithine (Sigma, Mississauga, ON, Canada) and
laminin (Gibco, Burlington, ON, Canada) coated glass
coverslips in 12 well plates. By preserving cells for imaging
in an intact state, monolayer preparations were optimal
for confocal immunofluorescent quantitative analysis of
changes in expression of structural proteins MAP2 and
glial fibrillary acidic protein (GFAP). All cultures were
incubated, humidified, at 37°C in 10% CO2 and fed
biweekly by half media exchange. All experiments for
quantitative analyses by confocal microscopy were run in
duplicate from three separate primary cultures.

Gp120 exposure
At four weeks in vitro, cultures were exposed to 1 nM puri-
fied recombinant gp120SF2 (Austral Biologicals, San
Ramon, CA) via half media exchange as previously
described [38]. Cultures were incubated with gp120 for 72
hours (or less, as in the case of the time series study of
apoptosis, necrosis and proliferation). This dose of gp120
was selected from a dose response experiment that
revealed no visible injury at levels below 1 nM and con-
siderable cellular injury and nuclear debris at levels above.
Hence 1 nM was used as the lowest dose with a measura-
ble effect at 72 hours (figure 1).

Immunofluorescence and confocal imaging
Immunofluorescence and confocal imaging followed pre-
viously published protocols [38,40]. Briefly, seventy-two
hours post-gp120 exposure, cultures were rinsed twice
with phosphate buffered saline (PBS) and fixed for 30
minutes with 4% paraformaldehyde. After two PBS rinses,
cultures were blocked with 5% horse serum with 0.1% Tri-
ton X100 for 1 hour and incubated with monoclonal
mouse anti-human MAP2 (Sigma, Mississauga, ON, Can-
ada, 1:500 dilution) and polyclonal rabbit anti-human
GFAP (Sigma, Mississauga, ON, Canada, 1:1000 dilution)
antibodies simultaneously for two hours at room temper-
ature. Paired monolayers were incubated with mouse
anti-human Class III beta tubulin (C3βT) (Sigma, Missis-
sauga, ON, Canada, 1:1000 dilution, recognizes neuron
specific microtubule protein) and polyclonal rabbit anti-
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human GFAP antibodies for two hours at room tempera-
ture. The cells were rinsed with PBS and incubated in the
dark with Texas Red conjugated goat anti-rabbit (Jackson
ImmunoResearch, West Grove, PA, 1:200 dilution) and
fluorescein isothiocyanate (FITC) conjugated goat anti-
mouse (Sigma, Mississauga, ON, Canada, 1:500 dilution)
for one hour at room temperature. The cells were rinsed
with PBS and incubated for 5 minutes with Hoechst
nuclear stain in PBS (Sigma, Mississauga, ON, Canada,

1:100 dilution). Following a final PBS wash, the monol-
ayers were mounted directly onto glass slides with Gelva-
tol fade resistant aqueous mounting media. Negative
controls were prepared in the absence of primary
antibody.

All cultures were imaged in a blinded fashion on a Zeiss
LSM 410 confocal microscope equipped with Krypton/
Argon and Helium/Neon lasers as previously described
[38]. Texas Red, FITC and Hoescht signals from twelve
random fields per coverslip were collected with a 63×
objective lens under oil immersion. Five serial vertical z-
planes were imaged within each field of view with a plane
thickness of 0.9 µm. Positive and negative controls were
run with all experimental sets and all related culture sets
were imaged in single sessions. Thresholds were set to
eliminate background fluorescence if present.

Cell counts were performed manually. Identification of
neurons and astrocytes was conservatively defined by cir-
cumnuclear expression of neuronal or astrocytic antigens
(MAP2 or GFAP) leading to a slight but consistent under-
estimate of both populations.

The intensity of immunofluorescent staining in each sam-
ple was measured, as determined by the average pixel
intensities for each fluorophore. Texas Red and FITC sig-
nals were normalized to the Hoechst signal.

Apoptosis, necrosis and cellular proliferation
Paired free floating neuroglial aggregate cultures were
fixed at 0, 2, 6, 12, 24 and 72 hours post-gp120 exposure.
The cultures were rinsed with PBS and fixed in 4% para-
formaldehyde for 30 minutes. The cells were then sus-
pended in 5% agar and embedded in paraffin blocks. 4
µm sections were cut from each sample and analysed for
apoptosis by terminal dUTP nick end labelling (TUNEL)
(Intergen, Purchase, NY). Positive nuclei were identified
by dark brown staining of shrunken or clumped nuclei.
Ten random fields from each section were viewed under a
40× objective and the percentage of apoptotic nuclei in
relation to total (methyl green counterstained) nuclei was
determined. Ki-67 (Vector, Burlington, ON, Canada) pos-
itive nuclei were enumerated relative to total nuclei in 10
random fields. Immediately prior to fixation the media
was sampled and assayed for lactate dehydrogenase
(LDH) according to manufacturer's directions (Sigma,
Mississauga, ON, Canada). Positive and negative controls
were run with all sets.

Statistical analysis
For quantification of MAP2 and GFAP staining in the
CSLM images, data were analyzed by Student's t-test. Data
obtained from assays of apoptosis, necrosis and cellular
proliferation were analyzed by one-way ANOVA followed

Seventy-two hour exposure to 1 nM gp120 causes observa-ble cellular injuryFigure 1
Seventy-two hour exposure to 1 nM gp120 causes 
observable cellular injury. Representative photomicro-
graphs of control (a) and gp120 exposed (b) cultures. There 
is nuclear pyknosis, neuropil vacuolation and fewer visible 
cell processes in cultures exposed to gp120 for 72 hours. 
H&E, all bars = 25 µm.
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by a Tukey's multiple comparison post-hoc test. In both
cases, probabilities of p < 0.05 were considered
significant.

Results
Routine light and confocal immunofluorescent micros-
copy of more than 20 separate primary cultures revealed
several consistent qualitative morphological changes in
neurons and astrocytes associated with a gp120 exposure
including nuclear pyknosis and a reduction in fine cellular
processes (figure 1). Neuronal processes in gp120-
exposed cultures were fewer, more sinuous, varicosed and
vacuolated compared to controls (figure 2a). Astrocytes
exposed to gp120 became more prominent in number
and size (figure 2b).

Quantitative analysis of confocal images revealed a 37%
decrease in MAP2 immunoreactivity (p < 0.05, Student's
t-test) and 43% increase in GFAP immunoreactivity (p <
0.02, Student's t-test) following gp120 exposure (figure
3). No significant differences were found in counts of total
or MAP2-associated nuclei between experimental and
control conditions. An 84% increase in the number of
GFAP-associated nuclei was observed after gp120 expo-
sure (p < 0.01, Student's t-test). No increase in total nuclei
and no significant proliferation (see below) suggested that
the increase in GFAP-associated nuclei was the result of
astrocytic hypertrophy and recruitment of immature glia.
There was no evidence of colocalization of MAP2 and
GFAP.

Apoptosis was not significantly increased in gp120-
exposed cultures at any time point compared with con-
trols within 24 hours of exposure (Tukey's). At 72 hours
post exposure there was a small increase in the incidence
of TUNEL-positive nuclei compared with all other time
points except for 2 hours. Proliferation as estimated by Ki-
67 immunohistochemistry (percentage of Ki-67 positive
nuclei) showed no significant difference between condi-
tions. Similarly, cellular necrosis, as assayed by LDH
release, was not significantly increased with gp120-expo-
sure (figure 4).

Discussion
HAD and the Minor Cognitive Motor Disorder (MCMD)
remain common, debilitating and costly complications of
HIV-1 infection and independent risk factors for death in
AIDS [1]. Recent post-mortem investigations of HAD
identified neuronal dendritic pathology as a correlate of
dementia [15,41]. Recent clinical evidence has suggested
that some cases of HAD show a degree of improvement on
HAART [6-8,42] and although apoptosis may occur in the
setting of HAD, the correlation between apoptosis and
dementia is poor [43]. Taken together, these findings and
the present report support the theory that the primary

Gp120 exposure results in astrocytic hypertrophy and a reduction in dendritic complexityFigure 2
Gp120 exposure results in astrocytic hypertrophy 
and a reduction in dendritic complexity. Representa-
tive immunofluorescent images from 4-week monolayer con-
trol cultures (a) and cultures exposed to gp120 for 72 hours 
(b) stained for C3βT (green) and GFAP (red). Neuronal 
processes in the gp120 exposed condition appear reduced, 
sinuous, varicosed and vacuolated in comparison to controls. 
All bars = 20 µm.
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Quantitative analysis confirmed gp120 induced astrocytic hypertrophy and reduced dendritic complexityFigure 3
Quantitative analysis confirmed gp120 induced astrocytic hypertrophy and reduced dendritic complexity. Rep-
resentative immunofluorescent images from 4-week monolayer control cultures (a) and cultures exposed to gp120 for 72 
hours (b) stained for MAP2 (green) and GFAP (red). All bars = 20 µm. Quantitative immunofluorescent analysis of the effect of 
72 hour gp120 exposure on MAP2 and GFAP expression (normalized to nuclear staining) using confocal scanning laser micro-
scopic images is shown in (c). Bars represent normalized mean pixel intensities from 12 random fields +/- SEM. Gp120 treated 
cultures demonstrate a 37% decrease in MAP2 immunoreactivity (p < 0.02) and a 43% increase in GFAP immunoreactivity (p < 
0.01) in comparison with controls. Error bars: +/- 1 standard error.
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Gp120 exposure did not induce cell proliferation, necrosis or TUNEL within 24 hours of exposureFigure 4
Gp120 exposure did not induce cell proliferation, necrosis or TUNEL within 24 hours of exposure. Gp120 expo-
sure time series data for Ki-67 (a), LDH (b) showing no significant differences at timepoints between 0 and 72 hours for prolif-
eration or necrosis. TUNEL (c) data suggest a small increase in apoptosis over baseline at 72 hours after gp120 exposure in 
comparison to all timepoints except 2 hours. Error bars: +/- 1 standard error.
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insult and reversible component of dementia, may be one
of neuronal dysfunction and subtle dendritic injury with
cumulative injuries leading to more extensive dendritic
damage, cell death and an irreversible component of
dementia. Further studies are needed to examine the asso-
ciation between dendritic injury, neuronal loss and the
reversibility of dementia. Apart from post-mortem studies
of human brain, there is a limited opportunity to study
the pathogenesis of HAD in human cells. The system
described herein represents such a tool.

In the present study we have identified a qualitative and
quantitative injury to the dendritic arbour of gp120
exposed neurons. The density of processes was reduced
and remaining processes showed pathological structural
alterations (fragmentation, varicosities, etc.). Further-
more, the changes in dendritic architecture were accompa-
nied by a significant decrease in the volume and intensity
of MAP2 immunoreactivity. Gp120 exposed cultures also
demonstrated astrocytic hypertrophy and an increase in
total GFAP immunoreactivity. These findings are reminis-
cent of those described in HAD in vivo [15,41] and provide
further evidence that gp120 is a contributing factor in
human neuronal injury.

TUNEL data suggest a small increase in apoptosis over
baseline at 72 hours after gp120 exposure in comparison
to all timepoints except 2 hours. Subsequent studies
(Walsh et al. Anhoxidant protection from HIV-1 gp 120-
induced neurogical toxicity. J. Neuroinflam 2004, 1:8)
suggest that this cytocidal injury is preceded by morpho-
logic alteration to astrocytes and neurons. Many other
authors have also shown an apoptotic component of
gp120 toxicity in a variety of experimental systems
[12,16,18,44]. The apparent sequence of cytotoxic, and
presumably reversible, injury (GFAP and MAP2 altera-
tion) followed by cytocidal, and presumably irreversible,
injury (TUNEL) invites a comparison to HAD whereby
HAART has been shown to provide some cognitive
improvement (reversible component) but with some
residual symptomatology (irreversible component) [8].

Ki-67 data suggest no significant change in DNA replica-
tion in response to gp120 exposure. Likewise, LDH analy-
ses show no evidence of increased necrosis. In the absence
of significant nuclear turnover, an increase in the number
of astrocytes in gp120 exposed cultures suggests the possi-
ble recruitment of existing precursors to form new astro-
cytes as a component of the observed increase in GFAP-
positive cells.

Conclusions
This culture system [38] offers certain advantages to the
study of neurotoxicity associated with HIV-1 being
derived from human tissue (of relevance in studying the

effects of a human-specific virus) grown under conditions
that promote the maturation of neurons in the absence of
astrocytic overgrowth. It has been adapted to studies of
engraftment [40] and oxidative injury [45] and the
present report documents its ability to reproduce neu-
ropathological correlates of HAD, providing an additional
tool for the study of dendritic injury in this form of
dementia. The present study characterizes cytotoxic and
cytocidal injuries associated with gp120 exposure in
human primary mixed CNS cultures.
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